Last active
April 19, 2017 06:42
-
-
Save dmonllao/a938c77d6230ccdf6285d84615223e1f to your computer and use it in GitHub Desktop.
php-ml linear classifier performance (partial training vs full training in 1 batch) (https://github.com/php-ai/php-ml/pull/78)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
RESULTS: | |
➜ php-ml git:(partial-train) ✗ clear ; php partial-vs-full.php | |
Classifier perceptron full train memory usage: | |
Usage from before data reading to end of training: 231704 | |
Classifier adaline full train memory usage: | |
Usage from before data reading to end of training: 265160 | |
Classifier logistic full train memory usage: | |
Usage from before data reading to end of training: 248408 | |
Classifier perceptron partial train memory usage: | |
Usage from before data reading to end of training: 9176 | |
Classifier adaline partial train memory usage: | |
Usage from before data reading to end of training: 86136 | |
Classifier logistic partial train memory usage: | |
Usage from before data reading to end of training: 17336 | |
SCRIPT (checkout partial-train branch) | |
<?php | |
require __DIR__ . '/vendor/autoload.php'; | |
use Phpml\Classification\Linear\Perceptron; | |
use Phpml\Classification\Linear\Adaline; | |
use Phpml\Classification\Linear\LogisticRegression; | |
define('BATCH_SIZE', 10); | |
$classifiers['perceptron'] = new Perceptron(); | |
$classifiers['adaline'] = new Adaline(); | |
$classifiers['logistic'] = new LogisticRegression(); | |
foreach ($classifiers as $name => $classifier) { | |
fullRun($name, $classifier); | |
} | |
$classifiers['perceptron'] = new Perceptron(); | |
$classifiers['adaline'] = new Adaline(); | |
$classifiers['logistic'] = new LogisticRegression(); | |
foreach ($classifiers as $name => $classifier) { | |
partialRun($name, $classifier); | |
} | |
function fullRun($name, $classifier) { | |
$filepath = __DIR__ . '/data/wine.csv'; | |
$handle = fopen($filepath, 'rb'); | |
$dontCareAboutHeaders = fgetcsv($handle, 1000); | |
echo 'Classifier ' . $name . ' full train memory usage: ' . PHP_EOL; | |
$membefore = memory_get_usage(false); | |
$samples = []; | |
$targets = []; | |
$features = null; | |
while (($data = fgetcsv($handle, 1000)) !== false) { | |
if ($features == null) { | |
$features = count($data) - 1; | |
} | |
$samples[] = array_slice($data, 0, $features); | |
$targets[] = $data[$features]; | |
} | |
fclose($handle); | |
$mem1 = memory_get_usage(false); | |
echo ' Usage during data reading: ' . ($mem1 - $membefore) . PHP_EOL; | |
$classifier->train($samples, $targets); | |
$mem2 = memory_get_usage(false); | |
echo ' Usage during training: ' . ($mem2 - $mem1) . PHP_EOL; | |
echo ' Usage from before data reading to end of training: ' . ($mem2 - $membefore) . PHP_EOL; | |
} | |
function partialRun($name, $classifier) { | |
$filepath = __DIR__ . '/data/wine.csv'; | |
$handle = fopen($filepath, 'rb'); | |
$dontCareAboutHeaders = fgetcsv($handle, 1000); | |
echo 'Classifier ' . $name . ' partial train memory usage: ' . PHP_EOL; | |
$membefore = memory_get_usage(false); | |
$samples = []; | |
$targets = []; | |
$features = null; | |
while (($data = fgetcsv($handle, 1000)) !== false) { | |
if ($features == null) { | |
$features = count($data) - 1; | |
} | |
$samples[] = array_slice($data, 0, $features); | |
$targets[] = $data[$features]; | |
if (count($samples) === BATCH_SIZE) { | |
$mem1 = memory_get_usage(false); | |
echo ' Usage reading data batch: ' . ($mem1 - $membefore) . PHP_EOL; | |
$classifier->partialTrain($samples, $targets, array(1, 2, 3)); | |
$mem2 = memory_get_usage(false); | |
echo ' Usage during partial training: ' . ($mem2 - $mem1) . PHP_EOL; | |
$samples = []; | |
$targets = []; | |
} | |
} | |
fclose($handle); | |
echo ' Usage from before data reading to end of training: ' . (memory_get_usage(false) - $membefore) . PHP_EOL; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment