Last active
February 23, 2016 12:17
-
-
Save dniku/9f2a656fffe7185a8d10 to your computer and use it in GitHub Desktop.
A solution to the numerical approximation problem from MSU's olympiad
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sympy import symbols, expand, Matrix, solve_linear_system, Rational, N | |
a, b, c = symbols('a b c') | |
h = symbols('h') | |
g1, g2, g3 = symbols('g1 g2 g3') | |
f = lambda x: a + b * x + c * x**2 | |
approx = g1 * f(-h/6) + g2 * f(0) + g3 * f(5 * h / 6) | |
print(expand(approx)) | |
# 2 2 | |
# b⋅g₁⋅h 5⋅b⋅g₃⋅h c⋅g₁⋅h 25⋅c⋅g₃⋅h | |
# a⋅g₁ + a⋅g₂ + a⋅g₃ - ────── + ──────── + ─────── + ────────── | |
# 6 6 36 36 | |
system = Matrix(( | |
( 1, 1, 1, 0), | |
( -h/6, 0, 5*h / 6, 0), | |
(h**2 / 36, 0, 25 * h**2 / 36, 2) | |
)) | |
sols = solve_linear_system(system, g1, g2, g3) | |
y = lambda x: x**3 | |
ans = sols[g1] * y(-h/6) + sols[g2] * y(0) + sols[g3] * y(5 * h / 6) | |
ans = ans.subs(h, Rational(6, 100)) | |
print(N(ans)) | |
# 0.0800000000000000 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment