Created
October 13, 2024 12:12
-
-
Save do-me/594d5f140578b40cbf4a375e47ba5888 to your computer and use it in GitHub Desktop.
Extract markdown table from arbitrary markdown text based on regex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import re | |
def extract_markdown_table(text): | |
""" | |
Extracts a markdown table from a string, removing other markdown elements. | |
Args: | |
text: The input string containing markdown. | |
Returns: | |
The extracted markdown table as a string, or an empty string if no table is found. | |
""" | |
if text is None or pd.isna(text): # Handle missing values | |
return "" | |
# Use regex to find the markdown table. This regex handles multi-line tables and some variations. | |
match = re.search(r"(?:^|\n)([\s\S]*?\n)(\|.*\|\n)((?:\|.*\|\n)+)", text) | |
if match: | |
# Reconstruct the table with optional header separator | |
header_row = match.group(1).strip() # Extract the header row (which could be blank if no header) | |
# Check if there's a proper header separator (--- or ===) | |
if re.match(r"^\|(?:[-=]+(?:\|[-=]+)+)\|$", header_row): | |
table_content = header_row + "\n" + match.group(2) + match.group(3) | |
elif header_row: | |
table_content = match.group(2) + match.group(3) # No header separator, skip the header row | |
else: | |
table_content = match.group(2) + match.group(3) | |
return table_content.strip() | |
else: | |
return "" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment