Created
May 25, 2019 11:33
-
-
Save do-me/7aac3486b568e3c784d1ffe9a1075aa3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# heatmap with seaborn | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
sns.set(style="white") | |
import os | |
pd.set_option('precision', 10) | |
os.chdir("C:/Users/Dome/Desktop/nu/Wahl- und Strukturdaten/Tabellen/") | |
ma = pd.read_csv("MASTERENG.csv",float_precision='round_trip') | |
# subsetting of master table required for desired factors | |
collist=[ "INSERT ALL COLUMNS FOR CORRELATION" # ma.columns.values | |
# AND add following columns for correlation | |
,'Area','selfindex17', 'deltaindex', 'linke17', 'gruenen17','spd17', | |
'fdp17','cducsu17', 'afd17'] | |
df = ma[collist].copy() # new df with columns above | |
# loc for subsetted East or West datasets | |
west = df.loc[df['Area'] == "West"] | |
east = df.loc[df['Area'] == "East"] | |
# Alternative: Berlin only with AreaB == Berlin, or for each county | |
# Compute the correlation matrix | |
corr = East.corr() | |
# or West.corr() | |
# or df.corr() | |
# mask for the triangle | |
mask = np.zeros_like(corr, dtype=np.bool) | |
mask[np.triu_indices_from(mask)] = True | |
# matplotlib figure | |
f, ax = plt.subplots(figsize=(11, 9)) | |
# custom diverging colormap | |
cmap = sns.diverging_palette(220, 10, as_cmap=True) | |
# heatmap with the mask and correct aspect ratio | |
sns.heatmap(corr, mask=mask, cmap=cmap, center=0, square=True, linewidths=.5, | |
cbar_kws={"shrink": .5}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment