Created
June 8, 2018 15:59
-
-
Save dokato/84298cd25983288ad16df821034d8329 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import mne | |
from mne.datasets.brainstorm import bst_resting | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import scipy.signal as ss | |
########################## INPUT: | |
folder = os.path.join(bst_resting.data_path(), 'MEG/bst_resting') | |
file = 'subj002_spontaneous_20111102_01_AUX_raw.fif' | |
subjects_dir = os.path.join(bst_resting.data_path(), 'subjects/') | |
subject = 'bst_resting' | |
trans = None | |
################################# | |
raw = mne.io.read_raw_fif(os.path.join(folder, file), | |
preload=True) | |
# According to http://neuroimage.usc.edu/brainstorm/DatasetResting | |
raw.set_channel_types({'EEG057': 'ecg', 'EEG058': 'eog'}) | |
new_fs = 256 | |
raw.resample(new_fs, npad='auto') | |
channel_picks = mne.pick_types(raw.info, meg=True) | |
# Filtering the data | |
raw_filtered = raw.filter(1.5, None, n_jobs=8, picks = channel_picks, | |
filter_length='auto', fir_design='firwin', method='fir') | |
raw_filtered = raw_filtered.notch_filter(60, picks=channel_picks, filter_length='auto', | |
phase='zero') | |
raw_filtered = raw_filtered.notch_filter(120, picks=channel_picks, filter_length='auto', | |
phase='zero') | |
raw_filtered.plot_psd() | |
del raw | |
epoch_length = 2 | |
reject = dict(mag=4e-12) | |
events = mne.event.make_fixed_length_events(raw_filtered, 1, duration = epoch_length) | |
epochs = mne.Epochs(raw_filtered, events, 1, 0, epoch_length, | |
proj=True, reject=reject) | |
rs_cov = mne.compute_covariance( epochs, method = ['shrunk', 'empirical']) | |
src = mne.setup_source_space(subject, spacing = 'oct6', | |
subjects_dir=subjects_dir, add_dist=False) | |
model = mne.make_bem_model(subject=subject, ico=4, | |
conductivity=(0.3,), | |
subjects_dir=subjects_dir) | |
bem = mne.make_bem_solution(model) | |
################### Warning: no trans matrix! | |
fwd = mne.make_forward_solution(raw_filtered.info, trans=trans, src=src, bem=bem, | |
meg=True, eeg=False, mindist=5., n_jobs=2) | |
################### | |
# Converts forward solution between different source orientations. | |
fwd = mne.convert_forward_solution(fwd, surf_ori = True) | |
fwd = mne.pick_types_forward(fwd, meg=True, eeg=False) | |
raw_filtered._data = np.random.randn(*raw_filtered._data.shape) | |
loose=0.2 | |
depth=0.8 | |
inverse_operator = mne.minimum_norm.make_inverse_operator(raw_filtered.info, fwd, rs_cov, | |
loose=loose, depth=depth) | |
snr = 1. | |
lambda2 = 1. / snr ** 2 | |
stc_lor = mne.minimum_norm.apply_inverse_raw(raw_filtered, inverse_operator, lambda2, | |
method="sLORETA", pick_ori="normal") | |
stc_beam = mne.beamformer.lcmv_raw(raw_filtered, fwd, None, rs_cov, reg=0.05, | |
pick_ori="normal", weight_norm='unit-noise-gain', | |
max_ori_out='signed') | |
labels = mne.read_labels_from_annot(subject, parc='aparc', | |
subjects_dir=subjects_dir) | |
label_colors = [label.color for label in labels] | |
label_ts_lor = mne.extract_label_time_course(stc_lor, labels, inverse_operator['src'], mode='pca_flip', | |
return_generator=False) | |
label_ts_beam = mne.extract_label_time_course(stc_beam, labels, inverse_operator['src'], mode='pca_flip', | |
return_generator=False) | |
psds_l, freqs = mne.time_frequency.psd_array_welch(label_ts_lor, raw_filtered.info['sfreq']) | |
psds_b, freqs = mne.time_frequency.psd_array_welch(label_ts_beam, raw_filtered.info['sfreq']) | |
def plot_mne_psd(freqs, psds, title = 'PSD'): | |
f, ax = plt.subplots() | |
psds = 10 * np.log10(psds) | |
psds_mean = psds.mean(0) | |
psds_std = psds.std(0) | |
ax.plot(freqs, psds_mean, color='k') | |
ax.fill_between(freqs, psds_mean - psds_std, psds_mean + psds_std, | |
color='k', alpha=.5) | |
ax.set(title=title, xlabel='Frequency', | |
ylabel='Power Spectral Density (dB)') | |
plt.show() | |
plot_mne_psd(freqs, psds_l,'sLORETA PSD') | |
plot_mne_psd(freqs, psds_b,'Beamforming PSD') | |
def make_env_corr(data): | |
""" | |
data - (channels x samples) array | |
""" | |
hdata = np.abs(ss.hilbert(data)) | |
return np.corrcoef(hdata) | |
crrm = make_env_corr(label_ts_beam) | |
plt.matshow(crrm) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment