Last active
June 18, 2020 00:01
-
-
Save dokato/ac5961454c9979229ff07dd78729504d to your computer and use it in GitHub Desktop.
siamese.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pickle | |
import itertools | |
import numpy as np | |
import tensorflow.keras as keras | |
with open('HackathonMetadata.pkl','rb') as ff: | |
metad = pickle.load(ff) | |
with open('HackathonData_Homology0.pkl','rb') as ff: | |
homol = pickle.load(ff) | |
def pairs_generator(batch_size = 1024): | |
iterator = itertools.combinations(range(homol['indata'].shape[0]), r=2) | |
bl1, bl2 = [], [] | |
for e, i in enumerate(iterator): | |
bl1.append(i[0]) | |
bl2.append(i[1]) | |
if e % batch_size == 0 and e != 0: | |
yield [homol['indata'][bl1], homol['indata'][bl2]], homol['distdata'][bl1,bl2] | |
bl1 = [] | |
bl2 = [] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from tensorflow import keras | |
from tensorflow.keras import layers | |
from tensorflow.keras import backend as K | |
from tensorflow.keras.layers import Lambda | |
from datget import pairs_generator | |
input_shape = (328) | |
left_input = layers.Input(input_shape) | |
right_input = layers.Input(input_shape) | |
model = keras.Sequential() | |
model.add(layers.Dense(60, activation='sigmoid',)) | |
model.add(layers.Dropout(0.2)) | |
model.add(layers.Dense(2, activation='sigmoid')) | |
encoded_l = model(left_input) | |
encoded_r = model(right_input) | |
norm = keras.layers.LayerNormalization(axis=1) | |
encoded_l = norm(encoded_l) | |
encoded_r = norm(encoded_r) | |
dist_output = layers.Dot(axes=1)([encoded_l, encoded_r]) | |
prediction = layers.Dense(1,activation='sigmoid')(dist_output) | |
siamese_net = keras.Model(inputs=[left_input,right_input], outputs=prediction) | |
optimizer = keras.optimizers.Adam(lr = 0.00006) | |
siamese_net.compile(loss="binary_crossentropy",optimizer=optimizer) | |
epochs = 100 | |
siamese_net.fit_generator(pairs_generator(), steps_per_epoch=1000, epochs= epochs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment