Created
October 24, 2024 13:44
-
-
Save donghee/f005b9d0807c6dd20b90d06b9cd1610f to your computer and use it in GitHub Desktop.
Exporting Isaacgym humanoid DOF angles
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (c) 2021-2023, NVIDIA Corporation | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# 3. Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.. | |
from enum import Enum | |
import numpy as np | |
import torch | |
import os | |
from gym import spaces | |
from isaacgym import gymapi | |
from isaacgym import gymtorch | |
from isaacgymenvs.tasks.amp.humanoid_amp_base import HumanoidAMPBase, dof_to_obs | |
from isaacgymenvs.tasks.amp.utils_amp import gym_util | |
from isaacgymenvs.tasks.amp.utils_amp.motion_lib import MotionLib | |
from isaacgymenvs.utils.torch_jit_utils import quat_mul, to_torch, calc_heading_quat_inv, quat_to_tan_norm, my_quat_rotate | |
NUM_AMP_OBS_PER_STEP = 13 + 52 + 28 + 12 # [root_h, root_rot, root_vel, root_ang_vel, dof_pos, dof_vel, key_body_pos] | |
import csv | |
class HumanoidAMP(HumanoidAMPBase): | |
class StateInit(Enum): | |
Default = 0 | |
Start = 1 | |
Random = 2 | |
Hybrid = 3 | |
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render): | |
self.cfg = cfg | |
state_init = cfg["env"]["stateInit"] | |
self._state_init = HumanoidAMP.StateInit[state_init] | |
self._hybrid_init_prob = cfg["env"]["hybridInitProb"] | |
self._num_amp_obs_steps = cfg["env"]["numAMPObsSteps"] | |
assert(self._num_amp_obs_steps >= 2) | |
self._reset_default_env_ids = [] | |
self._reset_ref_env_ids = [] | |
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render) | |
motion_file = cfg['env'].get('motion_file', "amp_humanoid_backflip.npy") | |
motion_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets/amp/motions/" + motion_file) | |
self._load_motion(motion_file_path) | |
self.num_amp_obs = self._num_amp_obs_steps * NUM_AMP_OBS_PER_STEP | |
self._amp_obs_space = spaces.Box(np.ones(self.num_amp_obs) * -np.Inf, np.ones(self.num_amp_obs) * np.Inf) | |
self._amp_obs_buf = torch.zeros((self.num_envs, self._num_amp_obs_steps, NUM_AMP_OBS_PER_STEP), device=self.device, dtype=torch.float) | |
self._curr_amp_obs_buf = self._amp_obs_buf[:, 0] | |
self._hist_amp_obs_buf = self._amp_obs_buf[:, 1:] | |
self._amp_obs_demo_buf = None | |
# csv | |
self.csv_file = open('joint_angles_with_names.csv', mode='w', newline='') | |
self.csv_writer = csv.writer(self.csv_file) | |
actor_handle = self.gym.get_actor_handle(self.envs[0], 0) | |
dof_names = self.gym.get_actor_dof_names(self.envs[0], actor_handle) | |
header = ['step', 'sim_time', 'env_id'] + dof_names | |
self.csv_writer.writerow(header) | |
self.timestep = 0 | |
return | |
def post_physics_step(self): | |
super().post_physics_step() | |
self._update_hist_amp_obs() | |
self._compute_amp_observations() | |
amp_obs_flat = self._amp_obs_buf.view(-1, self.get_num_amp_obs()) | |
self.extras["amp_obs"] = amp_obs_flat | |
# csv | |
joint_angles = self._dof_pos.cpu().numpy() | |
timestamp = self.gym.get_sim_time(self.sim) | |
for env_id in range(len(self.envs)): | |
row = [self.timestep, timestamp, env_id] + joint_angles[env_id].tolist() | |
self.csv_writer.writerow(row) | |
self.timestep += 1 | |
return | |
def get_num_amp_obs(self): | |
return self.num_amp_obs | |
@property | |
def amp_observation_space(self): | |
return self._amp_obs_space | |
def fetch_amp_obs_demo(self, num_samples): | |
return self.task.fetch_amp_obs_demo(num_samples) | |
def fetch_amp_obs_demo(self, num_samples): | |
dt = self.dt | |
motion_ids = self._motion_lib.sample_motions(num_samples) | |
if (self._amp_obs_demo_buf is None): | |
self._build_amp_obs_demo_buf(num_samples) | |
else: | |
assert(self._amp_obs_demo_buf.shape[0] == num_samples) | |
motion_times0 = self._motion_lib.sample_time(motion_ids) | |
motion_ids = np.tile(np.expand_dims(motion_ids, axis=-1), [1, self._num_amp_obs_steps]) | |
motion_times = np.expand_dims(motion_times0, axis=-1) | |
time_steps = -dt * np.arange(0, self._num_amp_obs_steps) | |
motion_times = motion_times + time_steps | |
motion_ids = motion_ids.flatten() | |
motion_times = motion_times.flatten() | |
root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \ | |
= self._motion_lib.get_motion_state(motion_ids, motion_times) | |
root_states = torch.cat([root_pos, root_rot, root_vel, root_ang_vel], dim=-1) | |
amp_obs_demo = build_amp_observations(root_states, dof_pos, dof_vel, key_pos, | |
self._local_root_obs) | |
self._amp_obs_demo_buf[:] = amp_obs_demo.view(self._amp_obs_demo_buf.shape) | |
amp_obs_demo_flat = self._amp_obs_demo_buf.view(-1, self.get_num_amp_obs()) | |
return amp_obs_demo_flat | |
def _build_amp_obs_demo_buf(self, num_samples): | |
self._amp_obs_demo_buf = torch.zeros((num_samples, self._num_amp_obs_steps, NUM_AMP_OBS_PER_STEP), device=self.device, dtype=torch.float) | |
return | |
def _load_motion(self, motion_file): | |
self._motion_lib = MotionLib(motion_file=motion_file, | |
num_dofs=self.num_dof, | |
key_body_ids=self._key_body_ids.cpu().numpy(), | |
device=self.device) | |
return | |
def reset_idx(self, env_ids): | |
super().reset_idx(env_ids) | |
self._init_amp_obs(env_ids) | |
return | |
def _reset_actors(self, env_ids): | |
if (self._state_init == HumanoidAMP.StateInit.Default): | |
self._reset_default(env_ids) | |
elif (self._state_init == HumanoidAMP.StateInit.Start | |
or self._state_init == HumanoidAMP.StateInit.Random): | |
self._reset_ref_state_init(env_ids) | |
elif (self._state_init == HumanoidAMP.StateInit.Hybrid): | |
self._reset_hybrid_state_init(env_ids) | |
else: | |
assert(False), "Unsupported state initialization strategy: {:s}".format(str(self._state_init)) | |
self.progress_buf[env_ids] = 0 | |
self.reset_buf[env_ids] = 0 | |
self._terminate_buf[env_ids] = 0 | |
return | |
def _reset_default(self, env_ids): | |
self._dof_pos[env_ids] = self._initial_dof_pos[env_ids] | |
self._dof_vel[env_ids] = self._initial_dof_vel[env_ids] | |
env_ids_int32 = env_ids.to(dtype=torch.int32) | |
self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._initial_root_states), | |
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) | |
self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state), | |
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) | |
self._reset_default_env_ids = env_ids | |
return | |
def _reset_ref_state_init(self, env_ids): | |
num_envs = env_ids.shape[0] | |
motion_ids = self._motion_lib.sample_motions(num_envs) | |
if (self._state_init == HumanoidAMP.StateInit.Random | |
or self._state_init == HumanoidAMP.StateInit.Hybrid): | |
motion_times = self._motion_lib.sample_time(motion_ids) | |
elif (self._state_init == HumanoidAMP.StateInit.Start): | |
motion_times = np.zeros(num_envs) | |
else: | |
assert(False), "Unsupported state initialization strategy: {:s}".format(str(self._state_init)) | |
root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \ | |
= self._motion_lib.get_motion_state(motion_ids, motion_times) | |
self._set_env_state(env_ids=env_ids, | |
root_pos=root_pos, | |
root_rot=root_rot, | |
dof_pos=dof_pos, | |
root_vel=root_vel, | |
root_ang_vel=root_ang_vel, | |
dof_vel=dof_vel) | |
self._reset_ref_env_ids = env_ids | |
self._reset_ref_motion_ids = motion_ids | |
self._reset_ref_motion_times = motion_times | |
return | |
def _reset_hybrid_state_init(self, env_ids): | |
num_envs = env_ids.shape[0] | |
ref_probs = to_torch(np.array([self._hybrid_init_prob] * num_envs), device=self.device) | |
ref_init_mask = torch.bernoulli(ref_probs) == 1.0 | |
ref_reset_ids = env_ids[ref_init_mask] | |
if (len(ref_reset_ids) > 0): | |
self._reset_ref_state_init(ref_reset_ids) | |
default_reset_ids = env_ids[torch.logical_not(ref_init_mask)] | |
if (len(default_reset_ids) > 0): | |
self._reset_default(default_reset_ids) | |
return | |
def _init_amp_obs(self, env_ids): | |
self._compute_amp_observations(env_ids) | |
if (len(self._reset_default_env_ids) > 0): | |
self._init_amp_obs_default(self._reset_default_env_ids) | |
if (len(self._reset_ref_env_ids) > 0): | |
self._init_amp_obs_ref(self._reset_ref_env_ids, self._reset_ref_motion_ids, | |
self._reset_ref_motion_times) | |
return | |
def _init_amp_obs_default(self, env_ids): | |
curr_amp_obs = self._curr_amp_obs_buf[env_ids].unsqueeze(-2) | |
self._hist_amp_obs_buf[env_ids] = curr_amp_obs | |
return | |
def _init_amp_obs_ref(self, env_ids, motion_ids, motion_times): | |
dt = self.dt | |
motion_ids = np.tile(np.expand_dims(motion_ids, axis=-1), [1, self._num_amp_obs_steps - 1]) | |
motion_times = np.expand_dims(motion_times, axis=-1) | |
time_steps = -dt * (np.arange(0, self._num_amp_obs_steps - 1) + 1) | |
motion_times = motion_times + time_steps | |
motion_ids = motion_ids.flatten() | |
motion_times = motion_times.flatten() | |
root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \ | |
= self._motion_lib.get_motion_state(motion_ids, motion_times) | |
root_states = torch.cat([root_pos, root_rot, root_vel, root_ang_vel], dim=-1) | |
amp_obs_demo = build_amp_observations(root_states, dof_pos, dof_vel, key_pos, | |
self._local_root_obs) | |
self._hist_amp_obs_buf[env_ids] = amp_obs_demo.view(self._hist_amp_obs_buf[env_ids].shape) | |
return | |
def _set_env_state(self, env_ids, root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel): | |
self._root_states[env_ids, 0:3] = root_pos | |
self._root_states[env_ids, 3:7] = root_rot | |
self._root_states[env_ids, 7:10] = root_vel | |
self._root_states[env_ids, 10:13] = root_ang_vel | |
self._dof_pos[env_ids] = dof_pos | |
self._dof_vel[env_ids] = dof_vel | |
env_ids_int32 = env_ids.to(dtype=torch.int32) | |
self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._root_states), | |
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) | |
self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state), | |
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) | |
return | |
def _update_hist_amp_obs(self, env_ids=None): | |
if (env_ids is None): | |
for i in reversed(range(self._amp_obs_buf.shape[1] - 1)): | |
self._amp_obs_buf[:, i + 1] = self._amp_obs_buf[:, i] | |
else: | |
for i in reversed(range(self._amp_obs_buf.shape[1] - 1)): | |
self._amp_obs_buf[env_ids, i + 1] = self._amp_obs_buf[env_ids, i] | |
return | |
def _compute_amp_observations(self, env_ids=None): | |
key_body_pos = self._rigid_body_pos[:, self._key_body_ids, :] | |
if (env_ids is None): | |
self._curr_amp_obs_buf[:] = build_amp_observations(self._root_states, self._dof_pos, self._dof_vel, key_body_pos, | |
self._local_root_obs) | |
else: | |
self._curr_amp_obs_buf[env_ids] = build_amp_observations(self._root_states[env_ids], self._dof_pos[env_ids], | |
self._dof_vel[env_ids], key_body_pos[env_ids], | |
self._local_root_obs) | |
return | |
##################################################################### | |
###=========================jit functions=========================### | |
##################################################################### | |
@torch.jit.script | |
def build_amp_observations(root_states, dof_pos, dof_vel, key_body_pos, local_root_obs): | |
# type: (Tensor, Tensor, Tensor, Tensor, bool) -> Tensor | |
root_pos = root_states[:, 0:3] | |
root_rot = root_states[:, 3:7] | |
root_vel = root_states[:, 7:10] | |
root_ang_vel = root_states[:, 10:13] | |
root_h = root_pos[:, 2:3] | |
heading_rot = calc_heading_quat_inv(root_rot) | |
if (local_root_obs): | |
root_rot_obs = quat_mul(heading_rot, root_rot) | |
else: | |
root_rot_obs = root_rot | |
root_rot_obs = quat_to_tan_norm(root_rot_obs) | |
local_root_vel = my_quat_rotate(heading_rot, root_vel) | |
local_root_ang_vel = my_quat_rotate(heading_rot, root_ang_vel) | |
root_pos_expand = root_pos.unsqueeze(-2) | |
local_key_body_pos = key_body_pos - root_pos_expand | |
heading_rot_expand = heading_rot.unsqueeze(-2) | |
heading_rot_expand = heading_rot_expand.repeat((1, local_key_body_pos.shape[1], 1)) | |
flat_end_pos = local_key_body_pos.view(local_key_body_pos.shape[0] * local_key_body_pos.shape[1], local_key_body_pos.shape[2]) | |
flat_heading_rot = heading_rot_expand.view(heading_rot_expand.shape[0] * heading_rot_expand.shape[1], | |
heading_rot_expand.shape[2]) | |
local_end_pos = my_quat_rotate(flat_heading_rot, flat_end_pos) | |
flat_local_key_pos = local_end_pos.view(local_key_body_pos.shape[0], local_key_body_pos.shape[1] * local_key_body_pos.shape[2]) | |
dof_obs = dof_to_obs(dof_pos) | |
obs = torch.cat((root_h, root_rot_obs, local_root_vel, local_root_ang_vel, dof_obs, dof_vel, flat_local_key_pos), dim=-1) | |
return obs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment