Skip to content

Instantly share code, notes, and snippets.

@dongzhuoyao
Created December 28, 2016 09:17
Show Gist options
  • Save dongzhuoyao/6a6163d027eb0f8e40fb0f028cf01051 to your computer and use it in GitHub Desktop.
Save dongzhuoyao/6a6163d027eb0f8e40fb0f028cf01051 to your computer and use it in GitHub Desktop.
deeplab_largeFOV_test
# VGG 16-layer network convolutional finetuning
# Network modified to have smaller receptive field (128 pixels)
# and smaller stride (8 pixels) when run in convolutional mode.
#
# In this model we also change max pooling size in the first 4 layers
# from 2 to 3 while retaining stride = 2
# which makes it easier to exactly align responses at different layers.
#
name: "DeepLab-LargeFOV"
layers {
name: "data"
type: IMAGE_SEG_DATA
top: "data"
top: "label"
top: "data_dim" # used for CRF layer, otherwise not necessary
image_data_param {
root_folder: "exper/voc12/data"
source: "exper/voc12/list/val.txt"
batch_size: 1
has_label: false
}
transform_param {
mean_value: 104.008
mean_value: 116.669
mean_value: 122.675
crop_size: 513
mirror: false
}
include: { phase: TEST }
}
### NETWORK ###
layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
pad: 1
#stride: 2
stride: 1
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: CONVOLUTION
convolution_param {
num_output: 512
#pad: 1
pad: 2
hole: 2
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: CONVOLUTION
convolution_param {
num_output: 512
#pad: 1
pad: 2
hole: 2
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
convolution_param {
num_output: 512
#pad: 1
pad: 2
hole: 2
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
#kernel_size: 2
#stride: 2
kernel_size: 3
stride: 1
pad: 1
}
}
layers {
bottom: "pool5"
top: "pool5a"
name: "pool5a"
type: POOLING
pooling_param {
pool: AVE
kernel_size: 3
stride: 1
pad: 1
}
}
layers {
bottom: "pool5a"
top: "fc6"
name: "fc6"
type: CONVOLUTION
strict_dim: false
convolution_param {
num_output: 1024
pad: 12
hole: 12
kernel_size: 3
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: CONVOLUTION
strict_dim: false
convolution_param {
num_output: 1024
kernel_size: 1
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8_exper/voc12"
name: "fc8_exper/voc12"
type: CONVOLUTION
strict_dim: false
convolution_param {
num_output: 21
kernel_size: 1
}
}
layers {
bottom: "fc8_exper/voc12"
top: "fc8_interp"
name: "fc8_interp"
type: INTERP
interp_param {
zoom_factor: 8
}
}
layers {
name: "fc8_mat"
type: MAT_WRITE
bottom: "fc8_interp"
mat_write_param {
prefix: "exper/voc12/features/DeepLab-LargeFOV/val/fc8/"
source: "exper/voc12/list/val_id.txt"
strip: 0
period: 1
}
include: { phase: TEST }
}
layers {
bottom: "fc8_interp"
bottom: "data_dim"
bottom: "data"
top: "crf_inf"
name: "crf"
type: DENSE_CRF
dense_crf_param {
max_iter: 10
pos_w: 3
pos_xy_std: 3
bi_w: 5
bi_xy_std: 50
bi_rgb_std: 10
}
include: { phase: TEST }
}
layers {
name: "crf_mat"
type: MAT_WRITE
bottom: "crf_inf"
mat_write_param {
prefix: "exper/voc12/features/DeepLab-LargeFOV/val/crf/"
source: "exper/voc12/list/val_id.txt"
strip: 0
period: 1
}
include: { phase: TEST }
}
layers {
bottom: "label"
name: "silence"
type: SILENCE
include: { phase: TEST }
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment