Created
December 28, 2016 09:17
-
-
Save dongzhuoyao/6a6163d027eb0f8e40fb0f028cf01051 to your computer and use it in GitHub Desktop.
deeplab_largeFOV_test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# VGG 16-layer network convolutional finetuning | |
# Network modified to have smaller receptive field (128 pixels) | |
# and smaller stride (8 pixels) when run in convolutional mode. | |
# | |
# In this model we also change max pooling size in the first 4 layers | |
# from 2 to 3 while retaining stride = 2 | |
# which makes it easier to exactly align responses at different layers. | |
# | |
name: "DeepLab-LargeFOV" | |
layers { | |
name: "data" | |
type: IMAGE_SEG_DATA | |
top: "data" | |
top: "label" | |
top: "data_dim" # used for CRF layer, otherwise not necessary | |
image_data_param { | |
root_folder: "exper/voc12/data" | |
source: "exper/voc12/list/val.txt" | |
batch_size: 1 | |
has_label: false | |
} | |
transform_param { | |
mean_value: 104.008 | |
mean_value: 116.669 | |
mean_value: 122.675 | |
crop_size: 513 | |
mirror: false | |
} | |
include: { phase: TEST } | |
} | |
### NETWORK ### | |
layers { | |
bottom: "data" | |
top: "conv1_1" | |
name: "conv1_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv1_1" | |
top: "conv1_1" | |
name: "relu1_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv1_1" | |
top: "conv1_2" | |
name: "conv1_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv1_2" | |
top: "conv1_2" | |
name: "relu1_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv1_2" | |
top: "pool1" | |
name: "pool1" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
} | |
} | |
layers { | |
bottom: "pool1" | |
top: "conv2_1" | |
name: "conv2_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv2_1" | |
top: "conv2_1" | |
name: "relu2_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv2_1" | |
top: "conv2_2" | |
name: "conv2_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv2_2" | |
top: "conv2_2" | |
name: "relu2_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv2_2" | |
top: "pool2" | |
name: "pool2" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
} | |
} | |
layers { | |
bottom: "pool2" | |
top: "conv3_1" | |
name: "conv3_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_1" | |
top: "conv3_1" | |
name: "relu3_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_1" | |
top: "conv3_2" | |
name: "conv3_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_2" | |
top: "conv3_2" | |
name: "relu3_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_2" | |
top: "conv3_3" | |
name: "conv3_3" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_3" | |
top: "conv3_3" | |
name: "relu3_3" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_3" | |
top: "pool3" | |
name: "pool3" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
} | |
} | |
layers { | |
bottom: "pool3" | |
top: "conv4_1" | |
name: "conv4_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_1" | |
top: "conv4_1" | |
name: "relu4_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_1" | |
top: "conv4_2" | |
name: "conv4_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_2" | |
top: "conv4_2" | |
name: "relu4_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_2" | |
top: "conv4_3" | |
name: "conv4_3" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_3" | |
top: "conv4_3" | |
name: "relu4_3" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_3" | |
top: "pool4" | |
name: "pool4" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
pad: 1 | |
#stride: 2 | |
stride: 1 | |
} | |
} | |
layers { | |
bottom: "pool4" | |
top: "conv5_1" | |
name: "conv5_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
#pad: 1 | |
pad: 2 | |
hole: 2 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_1" | |
top: "conv5_1" | |
name: "relu5_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_1" | |
top: "conv5_2" | |
name: "conv5_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
#pad: 1 | |
pad: 2 | |
hole: 2 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_2" | |
top: "conv5_2" | |
name: "relu5_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_2" | |
top: "conv5_3" | |
name: "conv5_3" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
#pad: 1 | |
pad: 2 | |
hole: 2 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_3" | |
top: "conv5_3" | |
name: "relu5_3" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_3" | |
top: "pool5" | |
name: "pool5" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
#kernel_size: 2 | |
#stride: 2 | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layers { | |
bottom: "pool5" | |
top: "pool5a" | |
name: "pool5a" | |
type: POOLING | |
pooling_param { | |
pool: AVE | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layers { | |
bottom: "pool5a" | |
top: "fc6" | |
name: "fc6" | |
type: CONVOLUTION | |
strict_dim: false | |
convolution_param { | |
num_output: 1024 | |
pad: 12 | |
hole: 12 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "fc6" | |
top: "fc6" | |
name: "relu6" | |
type: RELU | |
} | |
layers { | |
bottom: "fc6" | |
top: "fc6" | |
name: "drop6" | |
type: DROPOUT | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layers { | |
bottom: "fc6" | |
top: "fc7" | |
name: "fc7" | |
type: CONVOLUTION | |
strict_dim: false | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 1 | |
} | |
} | |
layers { | |
bottom: "fc7" | |
top: "fc7" | |
name: "relu7" | |
type: RELU | |
} | |
layers { | |
bottom: "fc7" | |
top: "fc7" | |
name: "drop7" | |
type: DROPOUT | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layers { | |
bottom: "fc7" | |
top: "fc8_exper/voc12" | |
name: "fc8_exper/voc12" | |
type: CONVOLUTION | |
strict_dim: false | |
convolution_param { | |
num_output: 21 | |
kernel_size: 1 | |
} | |
} | |
layers { | |
bottom: "fc8_exper/voc12" | |
top: "fc8_interp" | |
name: "fc8_interp" | |
type: INTERP | |
interp_param { | |
zoom_factor: 8 | |
} | |
} | |
layers { | |
name: "fc8_mat" | |
type: MAT_WRITE | |
bottom: "fc8_interp" | |
mat_write_param { | |
prefix: "exper/voc12/features/DeepLab-LargeFOV/val/fc8/" | |
source: "exper/voc12/list/val_id.txt" | |
strip: 0 | |
period: 1 | |
} | |
include: { phase: TEST } | |
} | |
layers { | |
bottom: "fc8_interp" | |
bottom: "data_dim" | |
bottom: "data" | |
top: "crf_inf" | |
name: "crf" | |
type: DENSE_CRF | |
dense_crf_param { | |
max_iter: 10 | |
pos_w: 3 | |
pos_xy_std: 3 | |
bi_w: 5 | |
bi_xy_std: 50 | |
bi_rgb_std: 10 | |
} | |
include: { phase: TEST } | |
} | |
layers { | |
name: "crf_mat" | |
type: MAT_WRITE | |
bottom: "crf_inf" | |
mat_write_param { | |
prefix: "exper/voc12/features/DeepLab-LargeFOV/val/crf/" | |
source: "exper/voc12/list/val_id.txt" | |
strip: 0 | |
period: 1 | |
} | |
include: { phase: TEST } | |
} | |
layers { | |
bottom: "label" | |
name: "silence" | |
type: SILENCE | |
include: { phase: TEST } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment