Created
October 12, 2023 18:31
-
-
Save dongzhuoyao/a4a736d3a86cafcaec79fb047c0dd9c7 to your computer and use it in GitHub Desktop.
cfg_single_forward
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from abc import abstractmethod | |
from functools import partial | |
import math | |
from typing import Iterable | |
import numpy as np | |
import torch | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from loguru import logger | |
from diffusion_utils.util import count_params | |
from dynamic.crossattetion_lr import Attention_LR | |
from dynamic.diffusionmodules.condition_mlp import get_cond_mlp | |
from dynamic.diffusionmodules.util import ( | |
checkpoint, | |
conv_nd, | |
linear, | |
avg_pool_nd, | |
zero_module, | |
normalization, | |
timestep_embedding, | |
) | |
from einops.layers.torch import Rearrange, Reduce | |
# dummy replace | |
def convert_module_to_f16(x): | |
pass | |
def convert_module_to_f32(x): | |
pass | |
# go | |
class AttentionPool2d(nn.Module): | |
""" | |
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py | |
""" | |
def __init__( | |
self, | |
spacial_dim: int, | |
embed_dim: int, | |
num_heads_channels: int, | |
output_dim: int = None, | |
): | |
super().__init__() | |
self.positional_embedding = nn.Parameter( | |
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5 | |
) | |
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) | |
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) | |
self.num_heads = embed_dim // num_heads_channels | |
self.attention = QKVAttention(self.num_heads) | |
def forward(self, x): | |
b, c, *_spatial = x.shape | |
x = x.reshape(b, c, -1) # NC(HW) | |
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) | |
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) | |
x = self.qkv_proj(x) | |
x = self.attention(x) | |
x = self.c_proj(x) | |
return x[:, :, 0] | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
@abstractmethod | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb, context=None): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
elif isinstance(layer, Attention_LR): | |
x = layer(x, context) | |
else: | |
x = layer(x) | |
return x | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd( | |
dims, self.channels, self.out_channels, 3, padding=padding | |
) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class TransposedUpsample(nn.Module): | |
"Learned 2x upsampling without padding" | |
def __init__(self, channels, out_channels=None, ks=5): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.up = nn.ConvTranspose2d( | |
self.channels, self.out_channels, kernel_size=ks, stride=2 | |
) | |
def forward(self, x): | |
return self.up(x) | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=padding, | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd(dims, self.out_channels, | |
self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 1) | |
def forward(self, x, emb): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return checkpoint( | |
self._forward, (x, emb), self.parameters(), self.use_checkpoint | |
) | |
def _forward(self, x, emb): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__( | |
self, | |
channels, | |
num_heads=1, | |
num_head_channels=-1, | |
use_checkpoint=False, | |
use_new_attention_order=False, | |
): | |
super().__init__() | |
self.channels = channels | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.use_checkpoint = use_checkpoint | |
self.norm = normalization(channels) | |
self.qkv = conv_nd(1, channels, channels * 3, 1) | |
if use_new_attention_order: | |
# split qkv before split heads | |
self.attention = QKVAttention(self.num_heads) | |
else: | |
# split heads before split qkv | |
self.attention = QKVAttentionLegacy(self.num_heads) | |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) | |
def forward(self, x): | |
# TODO: check checkpoint usage, is True # TODO: fix the .half call!!! | |
return checkpoint(self._forward, (x,), self.parameters(), True) | |
# return pt_checkpoint(self._forward, x) # pytorch | |
def _forward(self, x): | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
h = self.attention(qkv) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
def count_flops_attn(model, _x, y): | |
""" | |
A counter for the `thop` package to count the operations in an | |
attention operation. | |
Meant to be used like: | |
macs, params = thop.profile( | |
model, | |
inputs=(inputs, timestamps), | |
custom_ops={QKVAttention: QKVAttention.count_flops}, | |
) | |
""" | |
b, c, *spatial = y[0].shape | |
num_spatial = int(np.prod(spatial)) | |
# We perform two matmuls with the same number of ops. | |
# The first computes the weight matrix, the second computes | |
# the combination of the value vectors. | |
matmul_ops = 2 * b * (num_spatial**2) * c | |
model.total_ops += th.DoubleTensor([matmul_ops]) | |
class QKVAttentionLegacy(nn.Module): | |
""" | |
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, | |
length).split(ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = th.einsum("bts,bcs->bct", weight, v) | |
return a.reshape(bs, -1, length) | |
@staticmethod | |
def count_flops(model, _x, y): | |
return count_flops_attn(model, _x, y) | |
class QKVAttention(nn.Module): | |
""" | |
A module which performs QKV attention and splits in a different order. | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.chunk(3, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", | |
(q * scale).view(bs * self.n_heads, ch, length), | |
(k * scale).view(bs * self.n_heads, ch, length), | |
) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = th.einsum("bts,bcs->bct", weight, | |
v.reshape(bs * self.n_heads, ch, length)) | |
return a.reshape(bs, -1, length) | |
@staticmethod | |
def count_flops(model, _x, y): | |
return count_flops_attn(model, _x, y) | |
def prob_mask_like(shape, prob, device): | |
return torch.zeros(shape, device=device).float().uniform_(0, 1) < prob | |
def concat_double_dim0(x): | |
if x is None: | |
return None | |
else: | |
return torch.cat((x, x), 0) | |
class UNetModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param attention_resolutions: a collection of downsample rates at which | |
attention will take place. May be a set, list, or tuple. | |
For example, if this contains 4, then at 4x downsampling, attention | |
will be used. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
:param num_heads_channels: if specified, ignore num_heads and instead use | |
a fixed channel width per attention head. | |
:param num_heads_upsample: works with num_heads to set a different number | |
of heads for upsampling. Deprecated. | |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
:param resblock_updown: use residual blocks for up/downsampling. | |
:param use_new_attention_order: use a different attention pattern for potentially | |
increased efficiency. | |
""" | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_ca_block=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
# custom support for prediction of discrete ids into codebook of first stage vq model | |
n_embed=None, | |
legacy=True, | |
################# | |
cond_token_num=0, | |
cond_dim=None, | |
use_cls_token_as_pooled=None, | |
condition=None, | |
condition_method=None, | |
): | |
super().__init__() | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert ( | |
num_head_channels != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
if num_head_channels == -1: | |
assert ( | |
num_heads != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.use_cls_token_as_pooled = use_cls_token_as_pooled | |
self.condition = condition | |
self.condition_method = condition_method | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
# classifier-free related | |
logger.info("*" * 100) | |
self.cond_dim = cond_dim | |
self.cond_token_num = cond_token_num | |
assert self.cond_token_num >= 0 | |
assert isinstance(self.cond_dim, int) | |
if self.cond_token_num == 0: | |
assert self.cond_dim == 0 | |
self.null_cond_emb = None | |
elif self.cond_token_num == 1: | |
self.null_cond_emb = nn.Parameter( | |
torch.zeros(1, cond_dim), requires_grad=False | |
) | |
logger.info("has_cond!!!!!") | |
elif self.cond_token_num > 1: | |
self.null_cond_emb = nn.Parameter( | |
torch.zeros(self.cond_token_num, cond_dim), requires_grad=False | |
) | |
logger.info("has_cond!!!!!") | |
else: | |
raise (self.cond_token_num) | |
self.context_dim = context_dim | |
self.norm_cond = nn.LayerNorm(self.context_dim) | |
time_cond_dim = self.model_channels | |
num_time_tokens = 8 | |
self.to_time_tokens = nn.Sequential( | |
nn.Linear(time_cond_dim, time_cond_dim), | |
nn.SiLU(), | |
nn.Linear(time_cond_dim, self.context_dim * num_time_tokens), | |
Rearrange("b (r d) -> b r d", r=num_time_tokens), | |
) | |
if self.cond_token_num > 0: | |
self.cond_mlp = nn.Sequential( | |
linear(cond_dim, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
num_cond_tokens = 8 | |
self.to_cond_tokens = nn.Sequential( | |
nn.Linear(cond_dim, self.context_dim * num_cond_tokens), | |
Rearrange("b (r d) -> b r d", r=num_cond_tokens), | |
) | |
_mid_dim_cond_token2d = int(math.sqrt(self.context_dim * cond_dim)) | |
self.to_cond_tokens_2d = nn.Sequential( | |
nn.Linear(cond_dim, _mid_dim_cond_token2d), | |
nn.SiLU(), | |
nn.Linear(_mid_dim_cond_token2d, _mid_dim_cond_token2d), | |
nn.SiLU(), | |
nn.Linear(_mid_dim_cond_token2d, _mid_dim_cond_token2d), | |
nn.SiLU(), | |
nn.Linear(_mid_dim_cond_token2d, self.context_dim), | |
) | |
logger.info("has_cond!!!!!") | |
if condition_method in ["clusterlayout"]: | |
self.null_layout_emb = nn.Parameter( | |
torch.zeros(1, 1, image_size, image_size), requires_grad=False | |
) | |
in_channels += condition.clusterlayout.layout_dim | |
logger.info( | |
f"clusterlayout! in_channels += {condition.clusterlayout.layout_dim} " | |
) | |
if condition_method in ["stegoclusterlayout"]: | |
self.null_layout_emb = nn.Parameter( | |
torch.zeros(1, 1, image_size, image_size), requires_grad=False | |
) | |
in_channels += condition.stegoclusterlayout.layout_dim | |
logger.info( | |
f"clusterlayout! in_channels += {condition.stegoclusterlayout.layout_dim} " | |
) | |
if condition_method in ["layout"]: | |
self.null_layout_emb = nn.Parameter( | |
torch.zeros(1, 1, image_size, image_size), requires_grad=False | |
) | |
in_channels += condition.layout.layout_dim | |
logger.info( | |
f"layout! in_channels += {condition.layout.layout_dim} " | |
) | |
# classifier-free related | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ( | |
ch // num_heads if use_ca_block else num_head_channels | |
) | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
if not use_ca_block | |
else Attention_LR( | |
query_dim=ch, | |
heads=num_heads, | |
dim_head=dim_head, | |
context_dim=self.context_dim, | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_ca_block else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
if not use_ca_block | |
else Attention_LR( | |
query_dim=ch, | |
heads=num_heads, | |
dim_head=dim_head, | |
context_dim=self.context_dim, | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock( | |
ch + ich, | |
time_embed_dim, | |
dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ( | |
ch // num_heads if use_ca_block else num_head_channels | |
) | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads_upsample, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
if not use_ca_block | |
else Attention_LR( | |
query_dim=ch, | |
heads=num_heads, | |
dim_head=dim_head, | |
context_dim=self.context_dim, | |
) | |
) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
layers.append( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, | |
out_channels, 3, padding=1)), | |
) | |
def convert_to_fp16(self): | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.input_blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
self.output_blocks.apply(convert_module_to_f16) | |
def convert_to_fp32(self): | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.input_blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
self.output_blocks.apply(convert_module_to_f32) | |
def get_masked_cond(self, batch_size, cond, cond_drop_prob, device): | |
assert cond.shape[1] == self.cond_dim, f"wtf? {cond.shape[1]}, {self.cond_dim}" | |
cond_drop_mask = prob_mask_like( | |
(batch_size,), cond_drop_prob, device=device) | |
cond = torch.where( | |
rearrange(cond_drop_mask, "b -> b 1"), self.null_cond_emb, cond | |
) | |
return cond | |
def get_masked_cond_2d(self, batch_size, cond, cond_drop_prob, device): | |
cond_drop_mask = prob_mask_like( | |
(batch_size,), cond_drop_prob, device=device) | |
cond = torch.where( | |
rearrange(cond_drop_mask, "b -> b 1 1"), self.null_cond_emb, cond | |
) | |
return cond | |
def get_guided_score(self, z, zc, w): | |
if self.condition.scale_type == "imagen": | |
return (1 - w) * z + w * zc | |
elif self.condition.scale_type == "cfg": | |
return (1 + w) * zc - w * z | |
else: | |
raise ValueError(self.condition.scale_type) | |
def forward_with_cond_scale(self, x, t, cond_scale, cond=None, layout=None): | |
p0 = torch.full((x.shape[0],), 0.0, dtype=torch.float, device=x.device) | |
p1 = torch.full((x.shape[0],), 1.0, dtype=torch.float, device=x.device) | |
if isinstance(cond_scale, int) and cond_scale == 1: | |
epsilon_zc = self.forward( | |
x=x, timesteps=t, cond_drop_prob=p0, cond=cond, layout=layout, | |
) # epsilon(z,c) | |
if isinstance(epsilon_zc, tuple): | |
return epsilon_zc[0] | |
else: | |
return epsilon_zc | |
elif isinstance(cond_scale, int) and cond_scale == 0: | |
epsilon_z = self.forward( | |
x=x, timesteps=t, cond_drop_prob=p1, cond=cond, layout=layout, | |
) # epsilon(z) | |
if isinstance(epsilon_z, tuple): | |
return epsilon_z[0] | |
else: | |
return epsilon_z | |
else: | |
epsilon_cat = self.forward( | |
x=concat_double_dim0(x), | |
timesteps=concat_double_dim0(t), | |
cond_drop_prob=torch.cat((p0, p1), 0), | |
cond=concat_double_dim0(cond), | |
layout=concat_double_dim0(layout), | |
) # epsilon(z,c) | |
if isinstance(epsilon_cat, tuple): | |
# Eq 2) on Imagen paper. https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py#L1041 | |
epsilon_zc, epsilon_z = torch.chunk( | |
epsilon_cat[0], chunks=2, dim=0) | |
else: | |
epsilon_zc, epsilon_z = torch.chunk( | |
epsilon_cat, chunks=2, dim=0) | |
return self.get_guided_score(z=epsilon_z, zc=epsilon_zc, w=cond_scale) | |
def forward( | |
self, x, timesteps=None, cond_drop_prob=0.0, cond=None, layout=None | |
): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param context: conditioning plugged in via crossattn | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
if isinstance(cond_drop_prob, float) or isinstance(cond_drop_prob, int): | |
cond_drop_prob = torch.full( | |
(len(x),), cond_drop_prob, dtype=torch.float, device=x.device | |
) | |
else: | |
assert isinstance(cond_drop_prob, torch.Tensor) | |
batch_size, device, hs = len(x), x.device, [] | |
t_emb = timestep_embedding( | |
timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
########################### | |
time_tokens = self.to_time_tokens(t_emb) | |
if self.cond_token_num == 0: | |
context = time_tokens | |
if self.condition_method == "clusterlayout": | |
raise NotImplementedError | |
elif self.condition_method == "layout": | |
cond_drop_mask = prob_mask_like( | |
(batch_size,), cond_drop_prob, device=device) | |
layout_masked = torch.where( | |
rearrange(cond_drop_mask, "b -> b 1 1 1"), | |
self.null_layout_emb, | |
layout, | |
) | |
x = torch.cat((x, layout_masked), dim=1) # B,C,W,H | |
elif self.cond_token_num == 1: # image-level clusterid goes here, LOST goes here, stegoclusterlayout goes here | |
assert len(cond.shape) == 2 # [B,C] | |
cond_drop_mask = prob_mask_like( | |
(batch_size,), cond_drop_prob, device=device | |
) | |
cond_masked = torch.where( | |
rearrange(cond_drop_mask, "b -> b 1"), self.null_cond_emb, cond | |
) # [B,cond_num] | |
##### add condition info into context ##### | |
# [B,8(token_num),token_feat_num] | |
cond_tokens = self.to_cond_tokens(cond_masked) | |
context = torch.cat([time_tokens, cond_tokens], 1) | |
##### add condition info into embed ##### | |
cond_condensed = self.cond_mlp(cond_masked) | |
emb = emb + cond_condensed | |
##### concatenate into x if enabled ##### | |
if self.condition_method in ["clusterlayout", "stegoclusterlayout"]: | |
layout_masked = torch.where( | |
rearrange(cond_drop_mask, "b -> b 1 1 1"), | |
self.null_layout_emb, | |
layout, | |
) | |
x = torch.cat((x, layout_masked), dim=1) # B,C,W,H | |
elif self.cond_token_num > 1: | |
assert len(cond.shape) == 3 # [B,T,C] | |
cond_masked = self.get_masked_cond_2d( | |
batch_size=batch_size, | |
cond=cond, | |
cond_drop_prob=cond_drop_prob, | |
device=device, | |
) | |
# prepare context | |
cond_tokens = self.to_cond_tokens_2d(cond_masked) | |
context = torch.cat([time_tokens, cond_tokens], 1) | |
# prepare cond to concat with time_emb | |
if self.use_cls_token_as_pooled == True: | |
cond_pooled = cond_masked[:, 0, :] # only take CLS token | |
else: | |
# [batch_size, token_num, feat_dim]->[batch_size, feat_dim] | |
cond_pooled = torch.mean(cond_masked, dim=1) | |
if self.condition_method == "clusterlayout": | |
raise NotImplementedError | |
cond_condensed = self.cond_mlp(cond_pooled) | |
emb = emb + cond_condensed | |
else: | |
raise ValueError | |
context = self.norm_cond(context) | |
########################### | |
h = x.type(self.dtype) | |
for _, module in enumerate(self.input_blocks): | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
for module in self.output_blocks: | |
h = th.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context) | |
h = h.type(x.dtype) | |
_loss_in = 0.0 | |
_log_dict = dict() | |
return self.out(h), _loss_in, _log_dict | |
class EncoderUNetModel(nn.Module): | |
""" | |
The half UNet model with attention and timestep embedding. | |
For usage, see UNet. | |
""" | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
pool="adaptive", | |
*args, | |
**kwargs, | |
): | |
super().__init__() | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
use_new_attention_order=use_new_attention_order, | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
use_new_attention_order=use_new_attention_order, | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self._feature_size += ch | |
self.pool = pool | |
if pool == "adaptive": | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
nn.AdaptiveAvgPool2d((1, 1)), | |
zero_module(conv_nd(dims, ch, out_channels, 1)), | |
nn.Flatten(), | |
) | |
elif pool == "attention": | |
assert num_head_channels != -1 | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
AttentionPool2d( | |
(image_size // ds), ch, num_head_channels, out_channels | |
), | |
) | |
elif pool == "spatial": | |
self.out = nn.Sequential( | |
nn.Linear(self._feature_size, 2048), | |
nn.ReLU(), | |
nn.Linear(2048, self.out_channels), | |
) | |
elif pool == "spatial_v2": | |
self.out = nn.Sequential( | |
nn.Linear(self._feature_size, 2048), | |
normalization(2048), | |
nn.SiLU(), | |
nn.Linear(2048, self.out_channels), | |
) | |
else: | |
raise NotImplementedError(f"Unexpected {pool} pooling") | |
def convert_to_fp16(self): | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.input_blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
def convert_to_fp32(self): | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.input_blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
def forward(self, x, timesteps): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:return: an [N x K] Tensor of outputs. | |
""" | |
emb = self.time_embed(timestep_embedding( | |
timesteps, self.model_channels)) | |
results = [] | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb) | |
if self.pool.startswith("spatial"): | |
results.append(h.type(x.dtype).mean(dim=(2, 3))) | |
h = self.middle_block(h, emb) | |
if self.pool.startswith("spatial"): | |
results.append(h.type(x.dtype).mean(dim=(2, 3))) | |
h = th.cat(results, axis=-1) | |
return self.out(h) | |
else: | |
h = h.type(x.dtype) | |
return self.out(h) | |
if __name__ == "__main__": | |
pass |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment