Skip to content

Instantly share code, notes, and snippets.

@dongzhuoyao
Created December 25, 2016 05:21
Show Gist options
  • Save dongzhuoyao/c8649fa7f5d4a5132241d6bba3420daf to your computer and use it in GitHub Desktop.
Save dongzhuoyao/c8649fa7f5d4a5132241d6bba3420daf to your computer and use it in GitHub Desktop.
deeplabv2_vgg16_test
# VGG 16-layer network convolutional finetuning
# Network modified to have smaller receptive field (128 pixels)
# and smaller stride (8 pixels) when run in convolutional mode.
#
# In this model we also change max pooling size in the first 4 layers
# from 2 to 3 while retaining stride = 2
# which makes it easier to exactly align responses at different layers.
#
name: "deeplabv2_vgg16_test"
layer {
name: "data"
type: "ImageSegData"
top: "data"
top: "label"
top: "data_dim"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 513
mean_value: 104.008
mean_value: 116.669
mean_value: 122.675
}
image_data_param {
root_folder: ""
source: "camvid/list/val.txt"
batch_size: 1
label_type: NONE
}
}
###################### DeepLab ##########################
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 1
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 3
pad: 1
stride: 1
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
convolution_param {
num_output: 512
pad: 2
kernel_size: 3
dilation: 2
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
convolution_param {
num_output: 512
pad: 2
kernel_size: 3
dilation: 2
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
convolution_param {
num_output: 512
pad: 2
kernel_size: 3
dilation: 2
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
### hole = 6
layer {
name: "fc6_1"
type: "Convolution"
bottom: "pool5"
top: "fc6_1"
convolution_param {
num_output: 1024
pad: 6
kernel_size: 3
dilation: 6
}
}
layer {
name: "relu6_1"
type: "ReLU"
bottom: "fc6_1"
top: "fc6_1"
}
layer {
name: "drop6_1"
type: "Dropout"
bottom: "fc6_1"
top: "fc6_1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7_1"
type: "Convolution"
bottom: "fc6_1"
top: "fc7_1"
convolution_param {
num_output: 1024
kernel_size: 1
}
}
layer {
name: "relu7_1"
type: "ReLU"
bottom: "fc7_1"
top: "fc7_1"
}
layer {
name: "drop7_1"
type: "Dropout"
bottom: "fc7_1"
top: "fc7_1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_camvid_1"
type: "Convolution"
bottom: "fc7_1"
top: "fc8_camvid_1"
convolution_param {
num_output: 12
kernel_size: 1
}
}
### hole = 12
layer {
name: "fc6_2"
type: "Convolution"
bottom: "pool5"
top: "fc6_2"
convolution_param {
num_output: 1024
pad: 12
kernel_size: 3
dilation: 12
}
}
layer {
name: "relu6_2"
type: "ReLU"
bottom: "fc6_2"
top: "fc6_2"
}
layer {
name: "drop6_2"
type: "Dropout"
bottom: "fc6_2"
top: "fc6_2"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7_2"
type: "Convolution"
bottom: "fc6_2"
top: "fc7_2"
convolution_param {
num_output: 1024
kernel_size: 1
}
}
layer {
name: "relu7_2"
type: "ReLU"
bottom: "fc7_2"
top: "fc7_2"
}
layer {
name: "drop7_2"
type: "Dropout"
bottom: "fc7_2"
top: "fc7_2"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_camvid_2"
type: "Convolution"
bottom: "fc7_2"
top: "fc8_camvid_2"
convolution_param {
num_output: 12
kernel_size: 1
}
}
### hole = 18
layer {
name: "fc6_3"
type: "Convolution"
bottom: "pool5"
top: "fc6_3"
convolution_param {
num_output: 1024
pad: 18
kernel_size: 3
dilation: 18
}
}
layer {
name: "relu6_3"
type: "ReLU"
bottom: "fc6_3"
top: "fc6_3"
}
layer {
name: "drop6_3"
type: "Dropout"
bottom: "fc6_3"
top: "fc6_3"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7_3"
type: "Convolution"
bottom: "fc6_3"
top: "fc7_3"
convolution_param {
num_output: 1024
kernel_size: 1
}
}
layer {
name: "relu7_3"
type: "ReLU"
bottom: "fc7_3"
top: "fc7_3"
}
layer {
name: "drop7_3"
type: "Dropout"
bottom: "fc7_3"
top: "fc7_3"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_camvid_3"
type: "Convolution"
bottom: "fc7_3"
top: "fc8_camvid_3"
convolution_param {
num_output: 12
kernel_size: 1
}
}
### hole = 24
layer {
name: "fc6_4"
type: "Convolution"
bottom: "pool5"
top: "fc6_4"
convolution_param {
num_output: 1024
pad: 24
kernel_size: 3
dilation: 24
}
}
layer {
name: "relu6_4"
type: "ReLU"
bottom: "fc6_4"
top: "fc6_4"
}
layer {
name: "drop6_4"
type: "Dropout"
bottom: "fc6_4"
top: "fc6_4"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7_4"
type: "Convolution"
bottom: "fc6_4"
top: "fc7_4"
convolution_param {
num_output: 1024
kernel_size: 1
}
}
layer {
name: "relu7_4"
type: "ReLU"
bottom: "fc7_4"
top: "fc7_4"
}
layer {
name: "drop7_4"
type: "Dropout"
bottom: "fc7_4"
top: "fc7_4"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_camvid_4"
type: "Convolution"
bottom: "fc7_4"
top: "fc8_camvid_4"
convolution_param {
num_output: 12
kernel_size: 1
}
}
### SUM the four branches
layer {
bottom: "fc8_camvid_1"
bottom: "fc8_camvid_2"
bottom: "fc8_camvid_3"
bottom: "fc8_camvid_4"
top: "fc8_camvid"
name: "fc8_camvid"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
## original resolution
layer {
name: "fc8_interp"
type: "Interp"
bottom: "fc8_camvid"
top: "fc8_interp"
interp_param {
zoom_factor: 8
}
}
# layer {
# bottom: "fc8_interp"
# top: "fc8_interp_argmax"
# name: "fc8_interp_argmax"
# type: "ArgMax"
# argmax_param {
# axis: 1
# }
# }
layer {
name: "fc8_mat"
type: "MatWrite"
# bottom: "fc8_interp_argmax"
bottom: "fc8_interp"
include {
phase: TEST
}
mat_write_param {
prefix: "camvid/features/deeplabv2_vgg16/val/fc8/"
source: "camvid/list/val_id.txt"
strip: 0
period: 1
}
}
layer {
name: "silence"
type: "Silence"
bottom: "label"
bottom: "data_dim"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment