Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
Iee9keaYk+mfs+S5kAp8fG11c2ljLjE2My5jb20KQEAqLm11c2ljLjEyNi5uZXQKCiFRUemfs+S5kAp8 | |
fHkucXEuY29tXgp8fGkueS5xcS5jb20vdjgvcGxheXNvbmcuaHRtbAp8fGMueS5xcS5jb20vdjgvZmNn | |
LWJpbi9mY2dfcGxheV9zaW5nbGVfc29uZy5mY2cKQEBkbC5zdHJlYW0ucXFtdXNpYy5xcS5jb20KCiHp | |
hbfni5fpn7PkuZAKfHxrdWdvdS5jb21eCnx8aXAua3Vnb3UuY29tL2NoZWNrL2lzY24KQEBmcy5vcGVu | |
Lmt1Z291LmNvbQoKIemFt+aIkemfs+S5kAp8fGt1d28uY25eCnx8aXBjaGVjay5rdXdvLmNuL2lwX2No | |
ZWNrLmt1d28KQEBzeWNkbi5rdXdvLmNuXgoKIeeZvuW6pumfs+S5kAp8fG11c2ljLmJhaWR1LmNvbS9k | |
YXRhL3VzZXIvbG9jYXRpb24KQEB5aW55dWVzaGl0aW5nLmJhaWR1LmNvbQo= |
# Configuration | |
HOME_DIR=/home/[user]/ | |
VERSION=3.1.0 | |
# Installation | |
sudo apt-get update | |
sudo apt-get upgrade | |
sudo apt-get install -y build-essential cmake pkg-config | |
sudo apt-get install -y libjpeg8-dev libtiff5-dev libjasper-dev libpng12-dev | |
sudo apt-get install -y libavcodec-dev libavformat-dev libswscale-dev libv4l-dev |
#!/bin/bash | |
################################################################################ | |
### OpenCV2 Installation Script ### | |
################################################################################ | |
# Source code at https://github.com/arthurbeggs/scripts # | |
################################################################################ | |
# # | |
# Feel free to copy and modify this file. Giving me credit for it is your # | |
# choice, but please keep references to other people's work, which I don't # |
Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
Felix Krull runs a PPA offering basically any version of Python (seriously, there is 2.3.7 build for vivid...) for many Ubuntu releases at | |
https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes | |
Do the usual: | |
sudo add-apt-repository ppa:fkrull/deadsnakes | |
sudo apt-get update | |
sudo apt-get install python3.5 | |
It will not overwrite your existing python3.4 which is still symlinked as python3. If you want python3.5 to be the default python3, change the symlink |
function [Dictionary,output] = KSVD(... | |
Data,... % an nXN matrix that contins N signals (Y), each of dimension n. | |
param) | |
% ========================================================================= | |
% K-SVD algorithm | |
% ========================================================================= | |
% The K-SVD algorithm finds a dictionary for linear representation of | |
% signals. Given a set of signals, it searches for the best dictionary that | |
% can sparsely represent each signal. Detailed discussion on the algorithm | |
% and possible applications can be found in "The K-SVD: An Algorithm for |
""" | |
Multiclass SVMs (Crammer-Singer formulation). | |
A pure Python re-implementation of: | |
Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex. | |
Mathieu Blondel, Akinori Fujino, and Naonori Ueda. | |
ICPR 2014. | |
http://www.mblondel.org/publications/mblondel-icpr2014.pdf | |
""" |
Our goal is to run python -c "import caffe"
without crashing. For anyone who doesn't spend most of their time with build systems, getting to this point can be extremely difficult on OS X. Instead of providing a list of steps to follow, I'll try to epxlain why each step happens.
This page has OS X specific install instructions.
I assume:
本步骤能实现用Intel核芯显卡来进行显示, 用NVIDIA GPU进行计算。
安装开发所需要的一些基本包
sudo apt-get install build-essential # basic requirement
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe