本步骤能实现用Intel核芯显卡来进行显示, 用NVIDIA GPU进行计算。
安装开发所需要的一些基本包
sudo apt-get install build-essential
sudo apt-get install vim cmake git
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev
# Mathieu Blondel, September 2010 | |
# License: BSD 3 clause | |
import numpy as np | |
from numpy import linalg | |
import cvxopt | |
import cvxopt.solvers | |
def linear_kernel(x1, x2): | |
return np.dot(x1, x2) |
#include <opencv2/opencv.hpp> | |
#include <opencv2/nonfree/nonfree.hpp> | |
#include <iostream> | |
#include <vector> | |
#include <cmath> | |
using namespace std; | |
using namespace cv; | |
const double THRESHOLD = 400; |
from __future__ import division | |
from numpy import * | |
class AdaBoost: | |
def __init__(self, training_set): | |
self.training_set = training_set | |
self.N = len(self.training_set) | |
self.weights = ones(self.N)/self.N | |
self.RULES = [] |
<?xml version="1.0" encoding="UTF-8"?> | |
<configuration scan="true"> | |
<appender name="consoleAppender" class="ch.qos.logback.core.ConsoleAppender"> | |
<encoder> | |
<charset>UTF-8</charset> | |
<Pattern>%d %-4relative [%thread] %-5level %logger{35} - %msg%n</Pattern> | |
</encoder> | |
</appender> | |
<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"> |
\documentclass{book} | |
\usepackage{amsmath} | |
\usepackage{fontspec} | |
\usepackage{xunicode} | |
\usepackage{indentfirst} | |
%% XeTeX adds code when switching latin (0) or boundary (255) to CJK (1, 2, 3) | |
\XeTeXinterchartokenstate = 1 | |
%% Fonts for Latin and CJK |
""" Python implementation of the OASIS algorithm. | |
Graham Taylor | |
Based on Matlab implementation of: | |
Chechik, Gal, et al. | |
"Large scale online learning of image similarity through ranking." | |
The Journal of Machine Learning Research 11 (2010): 1109-1135. | |
""" | |
from __future__ import division |
# install dependencies | |
sudo apt-get update | |
sudo apt-get install -y build-essential | |
sudo apt-get install -y cmake | |
sudo apt-get install -y libgtk2.0-dev | |
sudo apt-get install -y pkg-config | |
sudo apt-get install -y python-numpy python-dev | |
sudo apt-get install -y libavcodec-dev libavformat-dev libswscale-dev | |
sudo apt-get install -y libjpeg-dev libpng-dev libtiff-dev libjasper-dev | |
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
Our goal is to run python -c "import caffe"
without crashing. For anyone who doesn't spend most of their time with build systems, getting to this point can be extremely difficult on OS X. Instead of providing a list of steps to follow, I'll try to explain why each step happens.
This page has OS X specific install instructions.
I assume: