Skip to content

Instantly share code, notes, and snippets.

View dongzhuoyao's full-sized avatar
💭
I may be slow to respond.

Tao Hu dongzhuoyao

💭
I may be slow to respond.
View GitHub Profile
@mblondel
mblondel / svm.py
Last active September 10, 2024 08:11
Support Vector Machines
# Mathieu Blondel, September 2010
# License: BSD 3 clause
import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
def linear_kernel(x1, x2):
return np.dot(x1, x2)
@thorikawa
thorikawa / matching_sift.cpp
Created August 19, 2012 23:37
SIFT keypoint matcher using OpenCV C++ interface
#include <opencv2/opencv.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
using namespace cv;
const double THRESHOLD = 400;
@tristanwietsma
tristanwietsma / adaboost.py
Created April 30, 2013 01:13
AdaBoost Python implementation of the AdaBoost (Adaptive Boosting) classification algorithm.
from __future__ import division
from numpy import *
class AdaBoost:
def __init__(self, training_set):
self.training_set = training_set
self.N = len(self.training_set)
self.weights = ones(self.N)/self.N
self.RULES = []
@jcraane
jcraane / logback.xml
Created July 3, 2013 18:26
Sample logback.xml file with console and rolling file appender. The rollover is time based (daily) and size based, 5MB.
<?xml version="1.0" encoding="UTF-8"?>
<configuration scan="true">
<appender name="consoleAppender" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<charset>UTF-8</charset>
<Pattern>%d %-4relative [%thread] %-5level %logger{35} - %msg%n</Pattern>
</encoder>
</appender>
<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
@xjia1
xjia1 / book.tex
Created February 8, 2014 09:26
LaTeX中文书模板
\documentclass{book}
\usepackage{amsmath}
\usepackage{fontspec}
\usepackage{xunicode}
\usepackage{indentfirst}
%% XeTeX adds code when switching latin (0) or boundary (255) to CJK (1, 2, 3)
\XeTeXinterchartokenstate = 1
%% Fonts for Latin and CJK
""" Python implementation of the OASIS algorithm.
Graham Taylor
Based on Matlab implementation of:
Chechik, Gal, et al.
"Large scale online learning of image similarity through ranking."
The Journal of Machine Learning Research 11 (2010): 1109-1135.
"""
from __future__ import division
@bearpaw
bearpaw / Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明.md
Last active March 12, 2020 01:24
Caffe + Ubuntu 12.04 / 14.04 64bit + CUDA 6.5 / 7.0 配置说明

Caffe + Ubuntu 12.04 64bit + CUDA 6.5 配置说明

本步骤能实现用Intel核芯显卡来进行显示, 用NVIDIA GPU进行计算。

1. 安装开发所需的依赖包

安装开发所需要的一些基本包

sudo apt-get install build-essential
sudo apt-get install vim cmake git
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev
@dynamicguy
dynamicguy / install-opencv-2.4.11-in-ubuntu.sh
Last active April 3, 2024 20:20
install opencv-2.4.11 in ubuntu
# install dependencies
sudo apt-get update
sudo apt-get install -y build-essential
sudo apt-get install -y cmake
sudo apt-get install -y libgtk2.0-dev
sudo apt-get install -y pkg-config
sudo apt-get install -y python-numpy python-dev
sudo apt-get install -y libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install -y libjpeg-dev libpng-dev libtiff-dev libjasper-dev
@karpathy
karpathy / min-char-rnn.py
Last active November 18, 2024 15:04
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@kylemcdonald
kylemcdonald / build-caffe.md
Last active March 26, 2024 05:52
How to build Caffe for OS X.

Theory of Building Caffe on OS X

Introduction

Our goal is to run python -c "import caffe" without crashing. For anyone who doesn't spend most of their time with build systems, getting to this point can be extremely difficult on OS X. Instead of providing a list of steps to follow, I'll try to explain why each step happens.

This page has OS X specific install instructions.

I assume: