Last active
March 7, 2021 12:26
-
-
Save donno2048/55c3984d6455bda25a3abe3a716e172b to your computer and use it in GitHub Desktop.
My LuaLaTex phd [work in progress]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[a4paper]{article} | |
\usepackage[top=2.5cm,bottom=2.5cm,left=2.5cm,right=2.5cm]{geometry} | |
\renewcommand{\baselinestretch}{2.0} | |
\usepackage{unicode-math} | |
\usepackage[bidi=basic]{babel} | |
\babelprovide[import,main, onchar=ids fonts]{hebrew} | |
\babelprovide[onchar=ids fonts]{english} | |
\defaultfontfeatures{ Scale=MatchLowercase, Ligatures=TeX, Renderer=HarfBuzz } | |
\babelfont[hebrew]{rm} | |
[Ligatures=Discretionary, | |
Language=Default, | |
UprightFont=*-Medium, | |
BoldFont=*-Bold , | |
ItalicFont=*-Medium , | |
BoldItalicFont=*-Bold]{DavidCLM} | |
\babeltags{english=english} | |
\usepackage[utf8x]{inputenc} | |
\usepackage[hebrew,english]{babel} | |
\usepackage{amssymb} | |
\usepackage{mathtools} | |
\usepackage{amsmath} | |
\usepackage{amsthm} | |
\usepackage{cancel} | |
\title{Complex Tangent-Magnitude Proportionality\\מתכונתיות משיק-עוצמה מרוכבת} | |
\author{Elisha Hollander} | |
\date{January 2021} | |
\newtheorem*{theorem}{Theorem} | |
\renewcommand\qedsymbol{$\blacksquare$} | |
\addto\captionsenglish{\renewcommand{\contentsname}{\begin{center}Contents\end{center}}} | |
\usepackage{tocloft} | |
\renewcommand{\cftsecleader}{\cftdotfill{\cftdotsep}} | |
\begin{document} | |
\maketitle | |
\selectlanguage{english} | |
\begin{center} | |
\textbf{Theoretical Doctoral Research Proposal} | |
\end{center} | |
\addcontentsline{toc}{section}{Main page} | |
\newpage | |
\tableofcontents | |
\addcontentsline{toc}{section}{Contents} | |
\newpage | |
\addcontentsline{toc}{section}{Introduction} | |
\begin{center} | |
\Large{Introduction} | |
\end{center} | |
\begin{theorem}[Main] | |
Let $z$ be an one dimensional function of $\Re \left(z\right)$ over $\mathbb Z$, then $\mid z\mid\not\propto\frac{d\left(z-\bar z\right)}{d\left(z+ \bar z\right)}$ | |
\end{theorem} | |
\begin{center} | |
To read it, you need to be familiar with: Calculus, Bessel-functions, Basic arithmetic, Induction, Real analysis, Discrete mathematics, Summation theory, Ricatti-equations, Infinite series, Complex analysis, Partial derivatives and Logarithms. | |
\end{center} | |
\newpage | |
\begin{center} | |
\Large{$z\bar z\propto\frac{d\left(z-\bar z\right)}{d\left(z+\bar z\right)}$ is possible} | |
\end{center} | |
\addcontentsline{toc}{section}{Similar case} | |
\begin{proof}[Proof] | |
First of all, we apply a complex to two dimensional real function transformation ($z\mapsto f$).\\In this case we can see that $f$ will have the property for a ratio of one if and only if:$$f\left(\sqrt{2x}\right)=\sqrt{\frac x2}\frac{J_{5/4}\left(x\right)+J_{3/4}\left(x\right)-J_{-5/4}\left(x\right)-J_{-3/4}\left(x\right)}{J_{1/4}\left(x\right)+J_{-1/4}\left(x\right)}-\frac 1{\sqrt{8x}}$$the complete workout is complex but it is easy to verify the outcome.\\To finish the proof we will transform $f$ into $z$ to get:$$z=\sqrt{2x}+\sqrt{\frac {-x}2}\frac{J_{5/4}\left(x\right)+J_{3/4}\left(x\right)-J_{-5/4}\left(x\right)-J_{-3/4}\left(x\right)}{J_{1/4}\left(x\right)+J_{-1/4}\left(x\right)}+\frac 1{\sqrt{-8x}}$$ | |
\end{proof} | |
\newpage | |
\clearpage | |
\begin{center} | |
\Large{$Ratio=1$} | |
\end{center} | |
\addcontentsline{toc}{section}{Ratio of one} | |
\begin{small} | |
\begin{proof}[Proof] | |
First of all, we apply a complex to two dimensional real function transformation ($z\mapsto f$).\\Let us define a new function$:\\g\left(x,y\right)\coloneqq$\begin{cases}$\lim_{a\rightarrow y\lfloor\frac xy\rfloor^-}g\left(a\right)\left(1+x-y\lfloor\frac xy\rfloor\right)$&$x\cancel{=}0\\f\left(0\right)$ & \text{else}\end{cases}\\Now, it is easy to see that $g$ is continuous and:\begin{equation}g\left(y\lfloor \frac xy \rfloor,y\right)=f\left(0\right)\left(y+1\right)^{\lfloor \frac xy \rfloor}\end{equation}\begin{equation}g'\left(x\right)=g\left(y\lfloor \frac xy \rfloor\right)\le g\left(x\right)\end{equation}and by definition: \begin{equation}g\left(0\right)=f\left(0\right)\end{equation}So by using equations 2 and 3 we get:\\$\forall_{y\in\mathbb{R}}f\left(x\right)\ge g\left(x,y\right)$\\and using equation 1 we get:\\$\forall_{y\in\mathbb{R}}g\left(x,y\right)\ge \left(1+y\right)^{\lfloor \frac xy \rfloor}f\left(0\right)$\\so overall we get:\\$\forall_{y\in\mathbb{R}}f\left(x\right)\ge g\left(x,y\right)\ge \left(1+y\right)^{\lfloor \frac xy \rfloor}f\left(0\right)$\\so by using $y=-1$ we get:\\$f\left(x\right)\ge g\left(x,-1\right)\ge \lim_{y\rightarrow -1}\left(1+y\right)^{\lfloor -x\rfloor}f\left(0\right)=\lim_{y\rightarrow 0}\frac{f\left(0\right)}{y^{\lfloor x\rfloor}}$\\So if we want $f$ to be continues, and it has to be, because it's actually $z$, then $f\left(0\right)=0$, by using this we can see that $f^{\left(n\right)}$ is zero for any $n$ which is not divisible by 4, then we define a new series:\\$b_n:=\frac{f^{\left(n\right)}\left(0\right)}{n!}$\\so we can inductively derive $f$ to get:\\$b_n=\sum_{k=1}^{n-1}\frac {\left(n-2\right)!}{\left(k-1\right)!\left(n-k-1\right)!}b_kb_{n-k}$\\So because of the properties of Maclaurin series:\\$f\left(x\right)=\sum_{n=1}^\infty\frac {b_{4n}x^{4n}}{\left(4n\right)!}$\\we will now define $a_n$ as $b_{4n}$ we can see that $a_1$ is 2 by deriving $f$ four times\\now we can define a new function $y$:\\\begin{equation}y\coloneqq\sum_{n=1}^\infty\frac {a_nx^n}{\left(4n-1\right)!}\end{equation}\\and using a new sum from 2 we can get:\\$\sum_{n=2}^\infty\frac{a_nx^n}{\left(4n-1\right)!}\left(4n-1\right)=\sum_{n=2}^\infty\sum_{k=1}^{n-1}\frac{a_ka_{n-k}x^kx^{n-k}}{\left(4k-1\right)!\left(4\left(n-k\right)-1\right)!}$\\and we know:\\$4xy'-y-\frac{a_1x}{2}=y^2$\\and since $a_1=2$:\\$4xy'=x+y+y^2$\\using the solving steps of Riccati equations:\\$\left(\ln u\right)'\coloneqq-\frac y{4x}\Rightarrow u''+\frac3{4x} u'+\frac1{16x}u=0$\\then we can get the general solution:\\$u=C_1x^{\frac 18}J_{-\frac 14}\left(\frac {\sqrt x}2\right) +C_2x^{\frac18}J_{\frac14}\left(\frac {\sqrt x}2\right)$\\and we know that $y/x$ is defined at zero so:\\$u=C_1x^{\frac 18}J_{-\frac 14}\left(\frac {\sqrt x}2\right)$\\so by using the definition of $u$ we get:\\$y=-4x\frac {\left(x^{\frac18}J_{-\frac14}\left(\frac{\sqrt x}2\right)\right)'}{x^{\frac 18}J_{-\frac 14}\left(\frac {\sqrt x}2\right)}$\\Since $J_v'\left(x\right)=\frac12 \left(J_{v-1}\left(x\right)-J_{v+1}\left(x\right)\right)$ we know:\\$y=\frac{-\frac 12 x^{\frac 18}J_{-\frac14}\left(\frac {\sqrt x}2\right)-\frac 12 x^{\frac 58}J_{-\frac 54}\left(\frac {\sqrt x}2\right)+\frac 12 x^{\frac 58}J_{\frac 34}\left(\frac {\sqrt x}2\right)}{x^{\frac 18}J_{-\frac 14}\left(\frac {\sqrt x}2\right)}=\frac{\sqrt{x}\left(J_{\frac34}\left(\frac {\sqrt{x}}2\right)-J_{-\frac54}\left(\frac{\sqrt{x}}2\right)\right)-J_{-\frac14}\left(\frac{\sqrt{x}}2\right)}{2J_{-\frac14}\left(\frac{\sqrt{x}}2\right)}$\\now we can use $x^4$ in place of $x$ to get:\begin{equation}y\left(x^4\right)=\frac{x^2\left(J_{\frac34}\left(\frac {x^2}2\right)-J_{-\frac54}\left(\frac{{x^2}}2\right)\right)-J_{-\frac14}\left(\frac{x^2}2\right)}{2J_{-\frac14}\left(\frac{x^2}2\right)}\end{equation}\\using equation number 4 we can see that $f\left(x\right)=\int\frac{y\left(x^4\right)}xdx$, we need the fourth power for an obvious reason and the integration and division by $x$ to divide each term in $y$ by $4n$ so using the fifth equation:\\$f\left(x\right)=\int\frac{x^2\left(J_{\frac34}\left(\frac {x^2}2\right)-J_{-\frac54}\left(\frac{{x^2}}2\right)\right)-J_{-\frac14}\left(\frac{x^2}2\right)}{2xJ_{-\frac14}\left(\frac{x^2}2\right)}dx=\int\left(\frac{x\left(J_{\frac 34}\left(\frac {x^2}2\right)-J_{-\frac 54}\left(\frac {x^2}2\right)\right)}{2J_{-\frac 14}\left(\frac {x^2}2\right)}-\frac 1{2x}\right)dx$\\we can add $\frac{\ln x}2$ to both sides and get:\\$f\left(x\right)+\frac{\ln x}2=\int\frac{x\left(J_{\frac 34}\left(\frac {x^2}2\right)-J_{-\frac 54}\left(\frac {x^2}2\right)\right)}{2J_{-\frac 14}\left(\frac {x^2}2\right)}dx$\\we know that $J_v'\left(x\right)=\frac12\left(J_{v-1}\left(x\right)-J_{v+1}\left(x\right)\right)$ so we can see:\\\begin{small}$f\left(x\right)+\frac{\ln x}2=-\int\frac x{J_{-\frac14}\left(\frac{x^2}2\right)}\frac{dJ_{-\frac 14}\left(\frac {x^2}2\right)}{d\frac{x^2}2}dx=-\int \frac{dJ_{-\frac14}\left(\frac{x^2}2\right)}{J_{-\frac14}\left(\frac {x^2}2\right)}=c-\ln\left(J_{-\frac14}\left(\frac{x^2}2\right)\right)\Rightarrow f\left(x\right)=c-\ln\left(J_{-\frac 14}\left(\frac {x^2}2\right)\right)-\ln\left(\sqrt x\right)$\end{small}\\so $f\left(0\right)$ is undefined, but we know $f\left(0\right)=0$ | |
\end{proof} | |
\end{small} | |
\newpage | |
\begin{center} | |
\Large{$Ratio\neq0,1$} | |
\end{center} | |
\begin{proof}[Proof] | |
For every ratio $r$, we apply a complex to two dimensional real function transformation ($z\mapsto f_r$), and then, we can find $g_r$ to prove $f_r\left(0\right)=0:\\g_r\left(x,y\right)\coloneqq$\begin{cases}$\lim_{a\rightarrow y\lfloor\frac xy\rfloor^-}g_r\left(a\right)\left(r+x-y\lfloor\frac xy\rfloor\right)$&$x\cancel{=}0\\f_r\left(0\right)$ & \text{else}\end{cases}\\This will result in $f_r$ being derived from $f$ and its derivatives, and can be easily proved to be impossible as well. | |
\end{proof} | |
\addcontentsline{toc}{section}{Other ratios} | |
\newpage | |
\begin{center} | |
Consequence | |
\end{center} | |
\addcontentsline{toc}{section}{Consequence} | |
\begin{theorem}[Consequence] | |
If we look at the five elements describing a 2d analytic function plot, the length $(L)$, the slope $(M)$, the distance from the origin $(D)$ and the coordinates $(x,\,y)$, we discover that $M\neq D\land L\neq y\land D\neq y$ is the only definite quality. | |
To prove it, I will show, for every other equality, a way to find a case where it applies and finally prove the statement itself. | |
\end{theorem} | |
\begin{proof}[M=L] | |
$$f'(x)=\int_0^x\sqrt{1+f'(x')^2}dx'\Rightarrow f''(x)=\sqrt{1+f'(x)^2}\Rightarrow \ln\left(\sqrt{1+f'(x)^2}+f'(x)\right)=\int\frac{\partial f'(x)}{\sqrt{1+f'(x)^2}}=\int\partial x=x$$$$\Rightarrow \sqrt{1+f'(x)^2}+f'(x)=e^x\Rightarrow 1=e^{2x}-2f'(x)e^x\Rightarrow f'(x)=\frac{e^{2x}-1}{2e^x}\Rightarrow f(x)=\frac12\left(e^x+e^{-x}\right)+C$$ | |
\end{proof} | |
\begin{proof}[L=D] | |
$$\sqrt{x^2+f(x)^2}=\int_0^x\sqrt{1+f'(x')^2}dx'\Rightarrow\frac{2x+2f(x)f'(x)}{2\sqrt{x^2+f(x)^2}}=\sqrt{1+f'(x)^2}\Rightarrow$$$$ 4x^2+4f(x)^2+4x^2f'(x)^2+4f(x)^2f'(x)^2=4x^2+8xf(x)f'(x)+4f(x)^2f'(x)^2$$$$\Rightarrow f(x)^2-2xf(x)f'(x)+x^2f'(x)^2=0\Rightarrow \left(f(x)-xf'(x)\right)^2=0\Rightarrow\frac{f'(x)}{f(x)}=x\Rightarrow\ln f(x)=\int\frac{\partial f(x)}{f(x)}=\int x\partial x=\frac{x^2}2$$$$\Rightarrow f(x)=\sqrt {e^{x^2}}$$ | |
\end{proof} | |
\begin{proof}[M=x] | |
$$f'(x)=x\Rightarrow f(x)=\frac{x^2}2+C$$ | |
\end{proof} | |
\begin{proof}[M=y] | |
$$f'(x)=f(x)\Rightarrow f(x)=Ce^x$$ | |
\end{proof} | |
\begin{proof}[L=x] | |
$$x=\int_0^x\sqrt{1+f'(x')^2}dx'\Rightarrow 1=\sqrt{1+f'(x)^2}\Rightarrow f(x)=C$$ | |
\end{proof} | |
\begin{proof}[D=x] | |
$$x=\sqrt{x^2+f(x)^2}\Rightarrow f(x)=0$$ | |
\end{proof} | |
\begin{proof}[$M\neq D\land L\neq y\land D\neq y$] | |
$$f(x)\neq\int_0^x\sqrt{1+f'(x')^2}dx'\Leftrightarrow f'(x)\neq\sqrt{1+f'(x)^2}\Leftrightarrow1\neq0$$ | |
$$f(x)=\sqrt{x^2+f(x)^2}\Leftrightarrow x=0$$ | |
And for the last part we need to apply the transformation ($z\mapsto f$) and get the $M\neq D$ part from the main theorem. | |
\end{proof} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment