Last active
January 19, 2023 04:43
-
-
Save donovancrichton/4e359d03cc77afc30b1ccedd23ac5a0c to your computer and use it in GitHub Desktop.
Typeclass implicit magic?
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Syntax | |
%default total | |
namespace SR | |
public export | |
interface Semiring a where | |
constructor MkSemiring | |
---------------------------- OPERATIONS ------------------------------------ | |
-- A semiring (R) has two binary operations: | |
(+) : a -> a -> a | |
(*) : a -> a -> a | |
-- And two identity elements, one for each operation: | |
zero : a | |
one : a | |
--------------------------------LAWS --------------------------------------- | |
-- Identity Laws for the additive identity: | |
zeroLeftId : {x : a} -> zero + x = x | |
zeroRightId : {x : a} -> x + zero = x | |
-- Identity Laws for the multiplicative identity: | |
oneLeftId : {x : a} -> one * x = x | |
oneRightId : {x : a} -> x * one = x | |
-- Plus must be commutative: | |
plusCommutes : {x, y, z : a} -> (x + y) + z = x + (y + x) | |
-- Multiplication is distributative: | |
multLeftDistributes : {x, y, z : a} -> x * (y + z) = (x * y) + (x * z) | |
multRightDistributes : {x, y , z : a} -> (x + y) * z = (x * z) + (y * z) | |
-- Zero annihilates for multiplication: | |
multZeroLeft : {x : a} -> zero * x = zero | |
multZeroRight : {x : a} -> x * zero = zero | |
--------------- Forward Declarations of Mutual Types ------------------------- | |
data Context : Type where | |
data TypeIn : Context -> Type where | |
data Term : (Semiring a) => a -> TypeIn gamma -> Type | |
namespace CtxScalar | |
-- Scalar multiplication of semirings in contexts. | |
public export | |
(*) : (Semiring a) => a -> Context -> Context | |
------------------------- Mutual Definitions --------------------------------- | |
-- A context is a snoc list that is either empty... | |
-- Or snocs a semiring element and a type onto an existing context. | |
public export | |
data Context : Type where | |
Empty : Context | |
Extend : (Semiring r) => (gamma : Context) | |
-> (r, TypeIn (SR.zero {a=r} * gamma)) -> Context | |
namespace CtxScalar | |
-- (*) : (Semiring a) => a -> Context -> Context | |
(*) k Empty = Empty | |
(*) {a} k (Extend {r} xs (pi, ty)) = Extend {r=a} (k * xs) (SR.(*) k ?pihole , ?tyhole) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment