Created
March 27, 2021 23:58
-
-
Save dpiponi/72325ec3b87fe1cee69e18147f795539 to your computer and use it in GitHub Desktop.
Branched flow with taichi
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy as np | |
import random | |
import matplotlib.pyplot as plt | |
medium_size = 1024 | |
x = np.linspace(-1., 1., medium_size) | |
y = np.linspace(-1., 1., medium_size) | |
x, y = np.meshgrid(x, y, indexing='ij') | |
u = np.random.randn(medium_size, medium_size) | |
v = np.random.randn(medium_size, medium_size) | |
z = (u.astype(np.complex64) + 1.j * v.astype(np.complex64)) / (0.001 + (x*x+y*y).astype(np.complex64)) | |
n = np.abs(np.fft.ifft2(z)).astype(np.float32) | |
n_np = 1 + 3.2 * n | |
print("Made field") | |
import taichi as ti | |
import taichi_glsl as ts | |
ti.init(arch=ti.gpu) | |
resolution = 1024 | |
counts = ti.field(dtype=float, shape=(resolution, resolution)) | |
pixels = ti.field(dtype=float, shape=(resolution, resolution)) | |
n = ti.field(dtype=float, shape=(resolution, resolution)) | |
force_x = ti.field(dtype=float, shape=(resolution, resolution)) | |
force_y = ti.field(dtype=float, shape=(resolution, resolution)) | |
num_particles = 500000 | |
p = ti.field(dtype=ti.f32, shape=(num_particles, 2)) | |
q = ti.field(dtype=ti.f32, shape=(num_particles, 2)) | |
dt = 0.0005 | |
dx = 2. / resolution | |
dy = 2. / resolution | |
idx = resolution / 2 | |
idy = resolution / 2 | |
offset_x = resolution / 2 | |
offset_y = resolution / 2 | |
@ti.kernel | |
def compute_force(): | |
for i, j in n: | |
force_x[i, j] = 0.5 * idx * (n[i + 1, j] - n[i - 1, j]) | |
force_y[i, j] = 0.5 * idy * (n[i, j + 1] - n[i, j - 1]) | |
@ti.kernel | |
def init_state(): | |
for i in range(num_particles): | |
p[i, 0] = ti.cos(2 * math.pi * i / num_particles) | |
p[i, 1] = ti.sin(2 * math.pi * i / num_particles) | |
q[i, 0] = 0 | |
q[i, 1] = 0 | |
@ti.kernel | |
def update(): | |
for i in range(num_particles): | |
xy = ts.vec2(idx * q[i, 0] + offset_x, idy * q[i, 1] + offset_y) | |
p[i, 0] -= dt * ts.bilerp(force_x, xy) | |
p[i, 1] -= dt * ts.bilerp(force_y, xy) | |
q[i, 0] += dt * p[i, 0] | |
q[i, 1] += dt * p[i, 1] | |
@ti.kernel | |
def clear(): | |
for i, j in pixels: | |
counts[i, j] = 0 | |
@ti.kernel | |
def paint1(): | |
for i in range(num_particles): | |
x_coord = ti.cast(idx * q[i, 0] + offset_x, ti.i32) | |
y_coord = ti.cast(idy * q[i, 1] + offset_y, ti.i32) | |
counts[x_coord, y_coord] += 0.0025 | |
@ti.kernel | |
def paint2(): | |
for i, j in pixels: | |
pixels[i, j] = 0.25 * ti.log(1 + counts[i, j]) | |
gui = ti.GUI("Branched flow", res=(resolution, resolution)) | |
n.from_numpy(n_np) | |
init_state() | |
compute_force() | |
clear() | |
for i in range(1000000): | |
for j in range(5): | |
update() | |
paint1() | |
paint2() | |
gui.set_image(pixels) | |
gui.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Note line 80 is an atomic write that sucks up much of the performance. Need to find a better way.