Created
May 25, 2024 22:51
-
-
Save dranger003/845739ac3a64f49d608e9bb39317dbf5 to your computer and use it in GitHub Desktop.
Phi-3-Vision-128K-Instruct Stream
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# run_model_stream.py | |
import sys | |
import re | |
import os | |
import queue | |
import threading | |
import torch | |
from PIL import Image | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoProcessor, | |
# BitsAndBytesConfig, # Uncomment if you want to run quantized (see below, i.e. quantization_config) | |
TextStreamer, | |
) | |
class TextStreamerEx(TextStreamer): | |
def __init__(self, tokenizer, output): | |
super().__init__( | |
tokenizer, | |
skip_prompt=False, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False, | |
) | |
self.output = output | |
def put(self, value): | |
if len(value.shape) > 1: | |
return | |
super().put(value) | |
def on_finalized_text(self, text, stream_end=False): | |
self.output.put(text) | |
if stream_end: | |
self.output.put(None) | |
class Model: | |
def __init__(self, model_id, device_index=0): | |
self.model_id = model_id | |
self.index = device_index | |
self.loaded = False | |
def load(self): | |
self.processor = AutoProcessor.from_pretrained( | |
self.model_id, trust_remote_code=True | |
) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.model_id, | |
device_map=f"cuda:{self.index}", | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16, | |
# quantization_config=BitsAndBytesConfig(load_in_4bit=True), # Uncomment for quantize 4bit, or; | |
# quantization_config=BitsAndBytesConfig(load_in_8bit=True), # Uncomment for quantize 8bit | |
) | |
self.loaded = True | |
def run(self, input, output): | |
image, text = input | |
images = None | |
if image is not None: | |
images = [image] | |
input_ids = self.processor(images=images, text=text, return_tensors="pt").to( | |
self.model.device | |
) | |
_ = self.model.generate( | |
**input_ids, | |
eos_token_id=self.processor.tokenizer.eos_token_id, | |
max_new_tokens=4096, | |
do_sample=False, | |
streamer=TextStreamerEx(self.processor.tokenizer, output), | |
) | |
def prompt(self, image, text): | |
output = queue.Queue() | |
thread = threading.Thread(target=self.run, args=((image, text), output)) | |
thread.start() | |
while True: | |
text = output.get() | |
if text is None: | |
break | |
yield text | |
thread.join() | |
def get_image_path(line): | |
match = re.search(r"^`(.*?)`", line) | |
if match: | |
return match.group(1), match.start(), match.end() | |
return None, None, None | |
def main(): | |
print("Loading model...") | |
model = Model("microsoft/Phi-3-vision-128k-instruct") | |
model.load() | |
print("Model loaded.") | |
print("Press <enter> on a blank line to quit.") | |
print("To load an image, prefix your prompt with the image path using backticks, for example: `~/tmp/image.png`Describe the image.") | |
print() | |
while True: | |
print("> ", end="", flush=True) | |
line = sys.stdin.readline().strip() | |
if not line: | |
break | |
image = None | |
image_path, start, end = get_image_path(line) | |
if image_path is not None: | |
image_path = os.path.expandvars(os.path.expanduser(image_path)) | |
if os.path.exists(image_path): | |
image = Image.open(image_path) | |
if image is not None: | |
prompt = f"<|image_1|>\n{line[:start] + line[end:]}" | |
else: | |
prompt = line | |
templatized_prompt = model.processor.tokenizer.apply_chat_template( | |
[{"role": "user", "content": prompt}], | |
tokenize=False, | |
add_generation_prompt=True, | |
) | |
for text in model.prompt(image, templatized_prompt): | |
print(text, end="", flush=True) | |
print(flush=True) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment