Created
December 10, 2015 21:27
-
-
Save drbenvincent/745adfa06cc96925fc10 to your computer and use it in GitHub Desktop.
importance sampling demo - Matlab - parameter estimation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
true_mean = 0; | |
true_sigma = 1; | |
% likelihood_func = @(x, mean, sigma) normpdf(x, mean, sigma); | |
% the above function to calcalate in matrix form, for speed | |
likelihood_func = @(x, mean, sigma)... | |
prod(normpdf(repmat(x,[1 numel(mean)]),... | |
repmat(mean, [1 numel(x)])',... | |
repmat(sigma,[1 numel(x)])' ), 1); | |
%% generate data | |
N=20; | |
observed_data = normrnd(true_mean, true_sigma, [N 1]); | |
%% Do importance sampling | |
% create many samples for mean and sigma | |
N = 10^6; | |
mean_samples = (rand(N,1)-0.5)*5; | |
sigma_samples = rand(N, 1) * 10; | |
proposal = 1/N; | |
% evaluate likelihood for each (mean, sigma) sample | |
target = likelihood_func(observed_data, mean_samples, sigma_samples); | |
% calculate importance weight | |
w = target ./ proposal; | |
w = w ./ sum(w); | |
% resample, with replacement, according to importance weight | |
sample_ind = randsample([1:N],N,true,w); | |
mean_samples = mean_samples(sample_ind); | |
sigma_samples = sigma_samples(sample_ind); | |
%% plot | |
plot(mean_samples,sigma_samples,'.') | |
xlabel('mean') | |
ylabel('sigma') | |
hold on | |
plot(true_mean, true_sigma, 'r.','MarkerSize',5^2) | |
axis square |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment