Skip to content

Instantly share code, notes, and snippets.

@dreness
Created October 4, 2024 19:33
Show Gist options
  • Save dreness/0676628bafe2b38fec5de0337e31fd43 to your computer and use it in GitHub Desktop.
Save dreness/0676628bafe2b38fec5de0337e31fd43 to your computer and use it in GitHub Desktop.
Create browsable lists of your photos ordered by score for various kinds of image analysis that Photos.app already does
# #!/usr/bin/env python
import sqlite3
import pandas as pd
import os
from glob import glob
"""
This script reads a Photos SQLite database to produce views of the top scored assets in each category.
"""
ALLOWED_EXTENSIONS = {'.png', '.jpg', '.jpeg', '.heic', '.heif', '.tiff', '.gif'}
SKIP_TABLES = {'ZDETECTIONTRAIT', 'ZMEMORY', 'ZFAILURESCORE', 'ZMOMENT',
'ZQUESTION', 'ZVISUALSEARCHATTRIBUTES', 'ZDETECTEDFACE',
'ZNOISESCORE', 'ZPHOTOSHIGHLIGHT', 'ZINTRUSIVEOBJECTPRESENCESCORE'}
# Connect to the SQLite database and retrieve score columns
def get_score_columns(conn):
query = "SELECT name FROM sqlite_master WHERE type='table';"
tables = pd.read_sql_query(query, conn)
score_info = {}
for table_name in tables['name']:
if table_name in SKIP_TABLES:
continue
columns = pd.read_sql_query(f"PRAGMA table_info({table_name})", conn)
score_columns = columns[columns['name'].str.contains('SCORE', case=False)]['name'].tolist()
if score_columns:
score_info[table_name] = score_columns
return score_info
# Extract assets with SCORE values and filenames
def get_assets_with_score_values(conn, score_columns):
asset_filenames = pd.read_sql_query("SELECT Z_PK, ZFILENAME FROM ZASSET", conn).set_index('Z_PK')['ZFILENAME']
assets_data = []
for table, columns in score_columns.items():
asset_id_column = 'Z_PK' if table == "ZASSET" else "ZASSET"
for column in columns:
query = f"SELECT {asset_id_column}, {column} FROM {table} WHERE {column} IS NOT NULL"
df = pd.read_sql_query(query, conn)
df = df.rename(columns={asset_id_column: 'AssetID', column: f"{table}_{column}"})
assets_data.append(df.set_index('AssetID'))
df_assets = pd.concat(assets_data, axis=1).reset_index()
df_assets['Filename'] = df_assets['AssetID'].map(asset_filenames.to_dict()).fillna('Unknown')
return df_assets.fillna(0)
def process_photo_scores(db_path, output_csv_path):
with sqlite3.connect(db_path) as conn:
score_columns = get_score_columns(conn)
df_assets = get_assets_with_score_values(conn, score_columns)
df_assets.to_csv(output_csv_path, index=False)
def has_allowed_extension(filename):
return any(filename.lower().endswith(ext) for ext in ALLOWED_EXTENSIONS)
def create_ordered_symlinks_for_scored_assets(originals_dir, symlinks_dir, assets_df, top_n=50):
os.makedirs(symlinks_dir, exist_ok=True)
score_cols = [col for col in assets_df.columns if 'SCORE' in col]
for score_col in score_cols:
print(f"\nProcessing {score_col}")
table_dir = os.path.join(symlinks_dir, score_col)
os.makedirs(table_dir, exist_ok=True)
sorted_assets = assets_df[assets_df['Filename'].apply(has_allowed_extension)].sort_values(by=score_col, ascending=False).head(top_n)
for i, asset in sorted_assets.iterrows():
basename = os.path.splitext(asset['Filename'])[0]
source_path = glob(os.path.join(originals_dir, basename[0], f"{basename}*"))
if source_path:
dest_path = os.path.join(table_dir, f"{i + 1}_{asset['Filename']}")
try:
os.symlink(source_path[0], dest_path)
print(".", end="")
if i + 1 == top_n:
print("x", end="")
continue
except FileExistsError:
pass # Ignore if the symlink already exists
def main():
# Queries the Photos database; writes a CSV file with asset scores
process_photo_scores('/Users/andre/Desktop/Photos copy.sqlite', 'assets_with_scores.csv')
# let's go pandas
assets_with_scores = pd.read_csv('assets_with_scores.csv')
# Create folders of symbolic links for top scored assets in each category
create_ordered_symlinks_for_scored_assets(
'/Users/andre/Pictures/Photos Library.photoslibrary/resources/derivatives',
'/Users/andre/Desktop/Scored_Assets',
assets_with_scores,
top_n=30
)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment