Created
July 12, 2022 20:07
-
-
Save drwebb/bf4d67d45310b4f728fc0322d207cdc4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def balance_teams(players, n_players, balance_mode): | |
# Partition or all set of team combinations | |
possible_teams = sympy.utilities.iterables.multiset_partitions(players,2) | |
# Filter possible teams to | |
filtered_possible_teams = [] | |
for p in possible_teams: | |
if(all([len(p_)==int(n_players/2) for p_ in p])): | |
filtered_possible_teams.append(p) | |
if balance_mode == "win_prob": | |
#Testing quality instead of win_porob | |
#win_probs = list(map(lambda x: win_probability(x[0], x[1], mode="system"), filtered_possible_teams)) | |
win_probs = list(map(lambda x: ts_env.quality( | |
(tuple(map(lambda y: y.system_rating, x[0])), | |
tuple(map(lambda y: y.system_rating, x[1])))), filtered_possible_teams)) | |
# Balance by max quality | |
best_balance_idx = np.argmax(win_probs) | |
if balance_mode == "ts_sum": | |
ts_deviation = list( | |
map(lambda x: abs( | |
sum(team_mus(x[0], mode="system")) - sum(team_mus(x[1], mode="system"))) | |
, filtered_possible_teams)) | |
# Balance by smallest true skill variance | |
best_balance_idx = np.argmin(list(map(lambda x: abs(x), ts_deviation))) | |
if balance_mode == "trusted_sum": | |
trusted_deviation = list(map(lambda x: abs( | |
(sum(team_mus(x[0])) - 3*sum(team_sigmas(x[0]))) - (sum(team_mus(x[1])) - 3*sum(team_sigmas(x[1])))), | |
filtered_possible_teams)) | |
# Balance by smallest trusted skill variance | |
best_balance_idx = np.argmin(list(map(lambda x: abs(x), trusted_deviation))) | |
return(filtered_possible_teams[best_balance_idx]) | |
def team_ratings(team, mode="system"): | |
if mode == "system": | |
return [p.system_rating for p in team] | |
else: | |
return [p.actual_rating for p in team] | |
def team_mus(team, mode="system"): | |
"""Returns a list of teams mus""" | |
if mode == "system": | |
return [p.system_rating.mu for p in team] | |
else: | |
return [p.actual_rating.mu for p in team] | |
def team_sigmas(team, mode="system"): | |
"""Returns a list of teams sigmas""" | |
if mode == "system": | |
return [p.system_rating.sigma for p in team] | |
else: | |
return [p.actual_rating.sigma for p in team] | |
def win_probability(team1, team2, mode): | |
""" TS win probability calc used for sim""" | |
delta_mu = sum(team_mus(team1, mode)) - sum(team_mus(team2, mode)) | |
sum_sigma = sum([r ** 2 for r in team_sigmas(team1 + team2, mode)]) | |
size = len(team1) + len(team2) | |
denom = math.sqrt(size * (ts_beta * ts_beta) + sum_sigma) | |
return ts_env.cdf(delta_mu / denom) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment