Skip to content

Instantly share code, notes, and snippets.

@dsapandora
Created October 21, 2021 01:55
Show Gist options
  • Save dsapandora/b4a4b47407088d8cbf3041485602eba6 to your computer and use it in GitHub Desktop.
Save dsapandora/b4a4b47407088d8cbf3041485602eba6 to your computer and use it in GitHub Desktop.
from flask import Flask
import socketio
import eventlet
from keras.models import load_model
import tensorflow as tf
import base64
from io import BytesIO
from PIL import Image
import numpy as np
import cv2
sio = socketio.Server()
app = Flask(__name__)
speed_limit = 20
def img_preprocess(img):
img = img[60:135 , : , : ,]
img = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
img = cv2.GaussianBlur(img, (3, 3), 0)
img = cv2.resize(img, (200, 66))
img = img/255
return img
@sio.on('telemetry')
def telemetry(sid, data):
speed = float(data['speed'])
image = Image.open(BytesIO(base64.b64decode(data['image'])))
image = np.asarray(image)
image = img_preprocess(image)
image = np.array([image])
steering_angle = float(model.predict(image))
throttle = 1.0 -speed/speed_limit
print('{} {} {}'.format(steering_angle, throttle, speed))
send_control(steering_angle, throttle)
@sio.on('connect')
def connect(sid, environ):
print('Connected')
send_control(0, 0)
def send_control(steering_angle, throttle):
sio.emit('steer', data = {
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
})
if __name__ == '__main__':
model = load_model('model.h5')
app = socketio.Middleware(sio, app)
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment