Created
March 21, 2020 05:29
-
-
Save dschwertfeger/427f9dcc7058147507a85dfbc5bb14bf to your computer and use it in GitHub Desktop.
An example of a neural network that uses a custom LogMelSpectrogram layer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def ConvModel(n_classes, sample_rate=16000, duration=4, | |
fft_size=_FFT_SIZE, hop_size=_HOP_SIZE, n_mels=_N_MEL_BINS): | |
n_samples = sample_rate * duration | |
# Accept raw audio data as input | |
x = Input(shape=(n_samples,), name='input', dtype='float32') | |
# Process into log-mel-spectrograms. (This is your custom layer!) | |
y = LogMelSpectrogram(sample_rate, fft_size, hop_size, n_mels)(x) | |
# Normalize data (on frequency axis) | |
y = BatchNormalization(axis=2)(y) | |
y = Conv2D(32, (3, n_mels), activation='relu')(y) | |
y = BatchNormalization()(y) | |
y = MaxPool2D((1, y.shape[2]))(y) | |
y = Conv2D(32, (3, 1), activation='relu')(y) | |
y = BatchNormalization()(y) | |
y = MaxPool2D(pool_size=(2, 1))(y) | |
y = Flatten()(y) | |
y = Dense(64, activation='relu')(y) | |
y = Dropout(0.25)(y) | |
y = Dense(n_classes, activation='softmax')(y) | |
return Model(inputs=x, outputs=y) | |
model = ConvModel(11) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['sparse_categorical_accuracy']) | |
model.summary() | |
# Model: "model" | |
# _________________________________________________________________ | |
# Layer (type) Output Shape Param # | |
# ================================================================= | |
# input (InputLayer) [(None, 64000)] 0 | |
# _________________________________________________________________ | |
# log_mel_spectrogram_4 (LogMe (None, 124, 64, 1) 0 | |
# _________________________________________________________________ | |
# batch_normalization (BatchNo (None, 124, 64, 1) 256 | |
# _________________________________________________________________ | |
# conv2d (Conv2D) (None, 122, 1, 32) 6176 | |
# _________________________________________________________________ | |
# batch_normalization_1 (Batch (None, 122, 1, 32) 128 | |
# _________________________________________________________________ | |
# max_pooling2d (MaxPooling2D) (None, 122, 1, 32) 0 | |
# _________________________________________________________________ | |
# conv2d_1 (Conv2D) (None, 120, 1, 32) 3104 | |
# _________________________________________________________________ | |
# batch_normalization_2 (Batch (None, 120, 1, 32) 128 | |
# _________________________________________________________________ | |
# max_pooling2d_1 (MaxPooling2 (None, 60, 1, 32) 0 | |
# _________________________________________________________________ | |
# flatten (Flatten) (None, 1920) 0 | |
# _________________________________________________________________ | |
# dense (Dense) (None, 64) 122944 | |
# _________________________________________________________________ | |
# dropout (Dropout) (None, 64) 0 | |
# _________________________________________________________________ | |
# dense_1 (Dense) (None, 11) 715 | |
# ================================================================= | |
# Total params: 133,451 | |
# Trainable params: 133,195 | |
# Non-trainable params: 256 | |
# _________________________________________________________________ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment