Created
December 29, 2019 10:24
-
-
Save dschwertfeger/c95fecff33767d07ea431e00a2554287 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import tensorflow as tf | |
AUTOTUNE = tf.data.experimental.AUTOTUNE | |
def get_dataset(df): | |
file_path_ds = tf.data.Dataset.from_tensor_slices(df.file_path) | |
label_ds = tf.data.Dataset.from_tensor_slices(df.label) | |
return tf.data.Dataset.zip((file_path_ds, label_ds)) | |
def load_audio(file_path, label): | |
# Load one second of audio at 44.1kHz sample-rate | |
audio = tf.io.read_file(file_path) | |
audio, sample_rate = tf.audio.decode_wav(audio, | |
desired_channels=1, | |
desired_samples=44100) | |
return audio, label | |
def prepare_for_training(ds, shuffle_buffer_size=1024, batch_size=64): | |
# Randomly shuffle (file_path, label) dataset | |
ds = ds.shuffle(buffer_size=shuffle_buffer_size) | |
# Load and decode audio from file paths | |
ds = ds.map(load_audio, num_parallel_calls=AUTOTUNE) | |
# Repeat dataset forever | |
ds = ds.repeat() | |
# Prepare batches | |
ds = ds.batch(batch_size) | |
# Prefetch | |
ds = ds.prefetch(buffer_size=AUTOTUNE) | |
return ds | |
def main(): | |
# Load meta.csv containing file-paths and labels as pd.DataFrame | |
df = pd.read_csv('meta.csv') | |
ds = get_dataset(df) | |
train_ds = prepare_for_training(ds) | |
batch_size = 64 | |
train_steps = len(df) / batch_size | |
model = tf.keras.models.load_model('model.h5') | |
model.fit(train_ds, epochs=10, steps_per_epoch=train_steps) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment