Created
August 17, 2016 16:20
-
-
Save dsdenes/b739d48befb37c9204e3d21367c7d455 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'rnn' | |
batchSize = 1000 | |
rho = 999999 | |
hiddenSize = 7 | |
nIndex = 10 | |
iters = 10 | |
learningRate = 0.1 | |
inputSize = 5 | |
dataSize = 18563460 | |
nn.FastLSTM.bn = true | |
rnn = nn.FastLSTM(inputSize, inputSize) | |
rnn = nn.Sequencer(rnn) | |
sequence = torch.Tensor(dataSize, inputSize) | |
criterion = nn.MSECriterion() | |
criterion = nn.SequencerCriterion(criterion) | |
print("Model :") | |
print(rnn) | |
offsets = torch.LongTensor(batchSize):random(1, dataSize) | |
-- training | |
minErr = inputSize -- report min error | |
minK = 0 | |
avgErrs = torch.Tensor(iters):fill(0) | |
for k = 1, iters do | |
-- 1. create a sequence of rho time-steps | |
local inputs, targets = {}, {} | |
for step=1,rho do | |
-- batch of inputs | |
inputs[step] = inputs[step] or sequence.new() | |
inputs[step]:index(sequence, 1, offsets) | |
-- batch of targets | |
offsets:add(1) -- increase indices by 1 | |
offsets[offsets:gt(opt.dataSize)] = 1 | |
targets[step] = targets[step] or sequence.new() | |
targets[step]:index(sequence, 1, offsets) | |
end | |
-- 2. forward sequence through rnn | |
rnn:zeroGradParameters() | |
local outputs = rnn:forward(inputs) | |
local err = criterion:forward(outputs, targets) | |
print('Iter: ' .. k .. ' Err: ' .. err) | |
avgErrs[k] = err | |
if avgErrs[k] < minErr then | |
minErr = avgErrs[k] | |
minK = k | |
end | |
-- 3. backward sequence through rnn (i.e. backprop through time) | |
local gradOutputs = criterion:backward(outputs, targets) | |
local gradInputs = rnn:backward(inputs, gradOutputs) | |
-- 4. update | |
rnn:updateParameters(learningRate) | |
end | |
print('min err: ' .. minErr .. ' on iteration ' .. minK) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment