Skip to content

Instantly share code, notes, and snippets.

@dsjohnson
Created December 11, 2013 21:17
Show Gist options
  • Save dsjohnson/7918603 to your computer and use it in GitHub Desktop.
Save dsjohnson/7918603 to your computer and use it in GitHub Desktop.
Helper functions for analyzing animal telemetry data with point process models from Devin S. Johnson, Mevin B. Hooten, and Carey E. Kuhn (2013) Estimating animal resource selection from telemetry data using point process models. Journal of Animal Ecology 82:1155--1164.
## Spatio-temporal point process RSF helper functions
###
### Create spatial polygons object from a SpatialPoints object
###
voronoiPoly <- function(layer){
require(deldir)
require(sp)
crds <- layer@coords
z <- deldir(crds[,1], crds[,2], rw=as.vector(t(bbox(layer))))
w <- tile.list(z)
polys <- vector(mode='list', length=length(w))
for (i in seq(along=polys)) {
pcrds <- cbind(w[[i]]$x, w[[i]]$y)
pcrds <- rbind(pcrds, pcrds[1,])
polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i))
}
SP <- SpatialPolygons(polys)
voronoi <- SpatialPolygonsDataFrame(SP,
data=data.frame(
x=crds[,1],y=crds[,2], row.names=sapply(slot(SP, 'polygons'), function(x) slot(x, 'ID'))))
}
###
### Create a likelihood object for a Brownian motion movement model
###
makeBmLik <- function(x,y,time){
dt <- diff(time)
dx <- diff(x)
dy <- diff(y)
return(function(par){-2*(sum(dnorm(dx,sd=par*sqrt(dt),log=TRUE))+sum(dnorm(dy,sd=par*sqrt(dt), log=TRUE)))})
}
###
### Make variable kernel map for a single animal
###
makeKernHR <- function(track.data, environ.data, h, time.col, id.col){
uid <- as.character(unique(track.data@data[,id.col]))
kern.df <- matrix(NA, nrow(environ.data), length(uid)+1)
colnames(kern.df) <- c(uid,"pop.kern")
for(i in 1:length(uid)){
track.data.i <- track.data[track.data@data[,id.col,]==uid[i],]
delta <- diff(track.data.i@data[,time.col])
D <- spDists(track.data.i, environ.data)
kern.df[,i] <- apply(sapply(c(1:length(delta)), function(j, D, delta){dnorm(D[j,], 0, h*sqrt(delta[j]))}, D=D, delta=delta), 1, sum)
kern.df[,i] <- kern.df[,i]/sum(kern.df[,i])
}
kern.df[,"pop.kern"] <- apply(kern.df[,1:length(uid)], 1, sum)
return(SpatialPixelsDataFrame(as(environ.data, "SpatialPixels"), data=as.data.frame(kern.df)))
}
###
### Simulate a weighted distribution movement/RSF model from a SpatialPixelsDataFrame
###
simWD <- function(start, times, layers, bm.sigma, coef, model){
require(sp)
hab <- layers
M <- model.matrix(model, layers@data)[,-1]
lnw <- M%*%matrix(coef,ncol=1)
maxw <- max(lnw)
hab@data <- data.frame(w=lnw-maxw)
size <- 1
track <- matrix(NA, nrow=length(times), ncol=3)
track[,1] <- sort(times)
delta <- diff(track[,1])
track[1,2:3] <- c(start[1], start[2])
while(size<length(times)){
prop <- data.frame(x=rnorm(1,track[size,2],bm.sigma*sqrt(delta[size])), y=rnorm(1,track[size,3],bm.sigma*sqrt(delta[size])))
coordinates(prop) <- ~x + y
wprop <- prop %over% hab
if((!is.na(wprop)) & runif(1,0,1)<=exp(wprop)){
track[size+1,2:3] <- coordinates(prop)
size=size+1
}
}
colnames(track) <- c("time", "x", "y")
track <- as.data.frame(track)
coordinates(track) <- ~x + y
return(track)
}
###
### Sample spatial quadrature points and find tile areas for quadrature weights
###
# getSpatialQuad <- function(n, type="hexagonal", track.data, environ.data, time.col, ...){
# require(sp)
# sp.quad <- spsample(environ.data, n=n, type=type, ...)
# if(is.numeric(time.col)) tnms <- colnames(track.data@data)[time.col]
# else tnms <- time.col
# sp.quad <- SpatialPointsDataFrame(sp.quad, data=data.frame(obs.time=rep(0,nrow(sp.quad@coords))))
# #sp.quad <- SpatialPointsDataFrame(sp.quad, data=over(sp.quad, environ.data))
# sp.quad <- rbind(sp.quad, SpatialPointsDataFrame(SpatialPoints(track.data), data=data.frame(obs.time=track.data@data[,time.col])))
# sp.quad@bbox <- bbox(environ.data)
# sp.poly <- voronoiPoly(sp.quad)
# labels <- sapply(sp.poly@polygons, FUN=function(x){return(x@ID)})
# area <- sapply(sp.poly@polygons, FUN=function(x){return(x@area)})
# sp.quad@data <- cbind(data.frame(ID=labels, area=area), sp.quad@data)
# return(list(sp.quad=sp.quad, sp.quad.poly=sp.poly))
# }
# ###
# ### Sample temporal quadrature points and find interval lengths for quadrature weights
# ###
# getTempQuad <- function(n=200, track.data, time.col){
# require(sp)
# if(missing(time.col)) stop("Argument 'time.col' is missing please specify!")
# times <- track.data@data[,time.col] - min(track.data@data[,time.col])
# tm.quad <- sort(c(times, seq(min(times), max(times), length=n+2)[-c(1,n+2)]))
# tm.quad <- tm.quad[!duplicated(tm.quad)]
# lengths <- diff(c(tm.quad[1], sapply(c(2:length(tm.quad)), function(i,v){mean(v[(i-1):i])}, v=tm.quad), tm.quad[length(tm.quad)]))
# lengths[2] <- sum(lengths[1:2])
# out <- data.frame(times=tm.quad[-1], length=lengths[-1], obs=ifelse(tm.quad%in%times, 1, 0)[-1])
# return(out)
# }
###
### Cross spatial and temporal quadratures to obtain 3d locations and volumes
###
SpatTempQuadrature <- function(track.data, environ.data, time.col, time.int, tile.dim){
require(sp)
require(rgeos)
environ.data$cellID <- 1:nrow(environ.data)
# make quad times
times <- track.data@data[,time.col] - min(track.data@data[,time.col])
qt <- seq(0, ceiling(max(times)/time.int)*time.int, time.int)
qt <- sort(c(times, qt))
qt <- qt[!duplicated(qt)]
lengths <- diff(c(qt[1], sapply(c(2:length(qt)), function(i,v){mean(v[(i-1):i])}, v=qt), qt[length(qt)]))
lengths[2] <- sum(lengths[1:2])
temp.quad <- data.frame(times=qt[-1], length=lengths[-1], obs=ifelse(qt%in%times, 1, 0)[-1])
temp.quad$x <- temp.quad$y <- NA
temp.quad$x[temp.quad$obs==1] <- coordinates(track.data)[-1,1]
temp.quad$y[temp.quad$obs==1] <- coordinates(track.data)[-1,2]
# Get disperion boundries
delta <- diff(times)
d1 <- spDists(track.data)
pwd <- d1[col(d1)==(row(d1)+1)]
disp.per.time <- pwd/delta
cut.vls <- quantile(delta, probs=seq(0,1,0.2))
cut.vls[6] <- cut.vls[6]*1.1
cut.vls[1] <- 0
delta.cat <- cut(delta, cut.vls)
disp.rad.lookup <- aggregate(disp.per.time, list(delta.cat), FUN=max)
disp.rad.lookup$x <- disp.rad.lookup$x/tile.dim[1]
disp.rad.lookup$y <- (disp.rad.lookup$x*tile.dim[1])/tile.dim[2]
# Make spatial quad points at temporal quad points
cat("\nConstructing spatial x temporal quadrature data\n")
cat("Please be patient...\n")
mu <- track.data@coords[1,]
time.last <- 0
df <- NULL
quad.time <- temp.quad$time
time.last <- 0
pb <- txtProgressBar(min = 0, max = nrow(temp.quad), style = 3)
for(i in 1:nrow(temp.quad)){
delta.last <- quad.time[i]-time.last
rad.x <- ceiling(disp.rad.lookup$x[findInterval(delta.last, cut.vls)]*delta.last)
rad.y <- ceiling(disp.rad.lookup$y[findInterval(delta.last, cut.vls)]*delta.last)
x.grid <- c(seq(mu[1]-rad.x*tile.dim[1], mu[1]-tile.dim[1], tile.dim[1]), mu[1], seq(mu[1]+tile.dim[1], mu[1]+rad.x*tile.dim[1], tile.dim[1]))
y.grid <- c(seq(mu[2]-rad.y*tile.dim[2], mu[2]-tile.dim[2], tile.dim[2]), mu[2], seq(mu[2]+tile.dim[2], mu[2]+rad.y*tile.dim[2], tile.dim[2]))
#grd.bbox <- matrix(c(mu[1]-(rad.x+0.5)*tile.dim[1], mu[2]-(rad.y+0.5)*tile.dim[2], mu[1]+(rad.x+0.5)*tile.dim[1], mu[2]+(rad.y+0.5)*tile.dim[2]), 2, 2)
#colnames(grd.bbox) <- c("min", "max")
#rownames(grd.bbox) <- c("x","y")
spqt <- as(SpatialPoints(expand.grid(x=x.grid, y=y.grid), proj4string=CRS(proj4string(environ.data))), "SpatialPixels")
spqtPoly <- as(spqt, "SpatialPolygons")
if(temp.quad$obs[i]==1) spqt <- rbind(SpatialPoints(temp.quad[i,c("x","y")], proj4string=CRS(proj4string(environ.data))), as(spqt,"SpatialPoints"))
else spqt <- as(spqt, "SpatialPoints")
#spqt@bbox <- grd.bbox
out <- as(spqt, "data.frame")
out$t <- temp.quad$time[i]
out$delta.last <- delta.last
out$area <- prod(tile.dim)
out$length<- temp.quad$length[i]
out$volume <- out$area*temp.quad$length[i]
out$response <- rep(0,length(out$area))
if(temp.quad$obs[i]==1){
out$area <- out$area/c(2, table(spqt%over%spqtPoly))
out$response[1] <- 1
}
out$response <- out$response/out$volume[1]
cov <- spqt %over% environ.data
out <- cbind(out, cbind(dist=spDistsN1(spqt, mu), cov))
out$bmKern <- -0.5*out$dist^2/out$delta.last
out <- out[!is.na(cov[,1]),]
df <- rbind(df, out)
if(temp.quad$obs[i]==1){
mu <- as.numeric(temp.quad[i,c("x","y")])
time.last <- temp.quad$time[i]
}
setTxtProgressBar(pb, i)
}
close(pb)
class(df) <- c("stQuad", class(df))
return(df)
}
###
### Create spatial quadrature data
###
SpatQuadrature <- function(track.data, environ.data){
require(sp)
require(rgeos)
# Make spatial quad points at temporal quad points
cat("\nConstructing spatial quadrature data\n")
cat("Please be patient...\n")
saPoly <- as(environ.data, "SpatialPolygons")
spGrid <- SpatialPointsDataFrame(as(environ.data, "SpatialPoints"), data=data.frame(obs=rep(0,dim(environ.data)[1])))
spTrack <- SpatialPointsDataFrame(as(track.data, "SpatialPoints"), data=data.frame(obs=rep(1,dim(track.data)[1])))
spq <- rbind(spTrack, spGrid)
quad.data <- cbind(coordinates(spq), cellID=spq %over% saPoly, obs=spq@data$obs, spq %over% environ.data)
wts <- as.vector(prod(environ.data@grid@cellsize)/(spq %over% aggregate(spq, by=saPoly, FUN=length))[,1])
quad.data$wts <- wts
quad.data$response <- quad.data$obs/quad.data$wts
class(quad.data) <- c("spatQuad", class(quad.data))
names(quad.data)[1:2] <- c("x","y")
return(quad.data)
}
###
### Fit RSF model with STPP
###
stppRSF <- function(model, Q.data, use.gam=FALSE, ...){
if(!inherits(Q.data, "stQuad")) stop("\nQ.data is not an object of class 'stQuad'! See function 'SpatTempQuadrature'\n")
if(!use.gam){
fit <- glm(model, data=Q.data, family=quasi(link=log, variance=mu), weights=volume, ...)
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*length(fit$coef)
}
else{
fit <- gam(model, data=Q.data, family=quasi(link=log, variance=mu), weights=volume, ...)
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*sum(fit$edf)
}
fit$maxLogLik <- -(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0))
class(fit) <- c("stppRSF.fit", class(fit))
return(fit)
}
###
### Fit RSF model with spatial process
###
spatRSF <- function(model, Q.data, use.gam=FALSE, ...){
if(!inherits(Q.data, "spatQuad")) stop("\nQ.data is not an object of class 'spatQuad'! See function 'SpatQuadrature'\n")
if(!use.gam){
fit <- glm(model, data=Q.data, family=quasi(link=log, variance=mu), weights=wts, ...)
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*length(fit$coef)
}
else{
fit <- gam(model, data=Q.data, family=quasi(link=log, variance=mu), weights=wts, ...)
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*sum(fit$edf)
}
fit$maxLogLik <- -(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0))
class(fit) <- c("spatRSF.fit", class(fit))
return(fit)
}
summaryRSF <- function(object){
if(!(inherits(object, "spatRSF.fit") | inherits(object, "stppRSF.fit"))) stop("\nThis is a summery function for 'stppRSF.fit' and 'spatRSF.fit' objects only/n")
return(summary(object, disp=1))
}
###
### STPP Likelihood calculation
###
n2logLikStpp <- function(model, Q.data, lower=-Inf, upper=Inf, makeFUN=TRUE){
mm <- model.matrix(model, Q.data)
y <- as.vector(Q.data$response)
if(inherits(Q.data,"spatQuad")) w <- as.vector(Q.data$wts)
else if(inherits(Q.data,"stQuad")) w <- as.vector(Q.data$volume)
else stop("Q.data argumaent is not an 'stQuad' or 'spatQuad' data object!\n")
return(
function(par){
if(any(par<lower)) val <- Inf
else if(any(par>upper)) val <- Inf
else{
lnL <- as.vector(mm%*%par)
val <- -2*crossprod(y*lnL - exp(lnL), w)
}
return(val)
}
)
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment