Created
December 11, 2013 21:17
-
-
Save dsjohnson/7918603 to your computer and use it in GitHub Desktop.
Helper functions for analyzing animal telemetry data with point process models from Devin S. Johnson, Mevin B. Hooten, and Carey E. Kuhn (2013) Estimating animal resource selection from telemetry data using point process models. Journal of Animal Ecology 82:1155--1164.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Spatio-temporal point process RSF helper functions | |
### | |
### Create spatial polygons object from a SpatialPoints object | |
### | |
voronoiPoly <- function(layer){ | |
require(deldir) | |
require(sp) | |
crds <- layer@coords | |
z <- deldir(crds[,1], crds[,2], rw=as.vector(t(bbox(layer)))) | |
w <- tile.list(z) | |
polys <- vector(mode='list', length=length(w)) | |
for (i in seq(along=polys)) { | |
pcrds <- cbind(w[[i]]$x, w[[i]]$y) | |
pcrds <- rbind(pcrds, pcrds[1,]) | |
polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i)) | |
} | |
SP <- SpatialPolygons(polys) | |
voronoi <- SpatialPolygonsDataFrame(SP, | |
data=data.frame( | |
x=crds[,1],y=crds[,2], row.names=sapply(slot(SP, 'polygons'), function(x) slot(x, 'ID')))) | |
} | |
### | |
### Create a likelihood object for a Brownian motion movement model | |
### | |
makeBmLik <- function(x,y,time){ | |
dt <- diff(time) | |
dx <- diff(x) | |
dy <- diff(y) | |
return(function(par){-2*(sum(dnorm(dx,sd=par*sqrt(dt),log=TRUE))+sum(dnorm(dy,sd=par*sqrt(dt), log=TRUE)))}) | |
} | |
### | |
### Make variable kernel map for a single animal | |
### | |
makeKernHR <- function(track.data, environ.data, h, time.col, id.col){ | |
uid <- as.character(unique(track.data@data[,id.col])) | |
kern.df <- matrix(NA, nrow(environ.data), length(uid)+1) | |
colnames(kern.df) <- c(uid,"pop.kern") | |
for(i in 1:length(uid)){ | |
track.data.i <- track.data[track.data@data[,id.col,]==uid[i],] | |
delta <- diff(track.data.i@data[,time.col]) | |
D <- spDists(track.data.i, environ.data) | |
kern.df[,i] <- apply(sapply(c(1:length(delta)), function(j, D, delta){dnorm(D[j,], 0, h*sqrt(delta[j]))}, D=D, delta=delta), 1, sum) | |
kern.df[,i] <- kern.df[,i]/sum(kern.df[,i]) | |
} | |
kern.df[,"pop.kern"] <- apply(kern.df[,1:length(uid)], 1, sum) | |
return(SpatialPixelsDataFrame(as(environ.data, "SpatialPixels"), data=as.data.frame(kern.df))) | |
} | |
### | |
### Simulate a weighted distribution movement/RSF model from a SpatialPixelsDataFrame | |
### | |
simWD <- function(start, times, layers, bm.sigma, coef, model){ | |
require(sp) | |
hab <- layers | |
M <- model.matrix(model, layers@data)[,-1] | |
lnw <- M%*%matrix(coef,ncol=1) | |
maxw <- max(lnw) | |
hab@data <- data.frame(w=lnw-maxw) | |
size <- 1 | |
track <- matrix(NA, nrow=length(times), ncol=3) | |
track[,1] <- sort(times) | |
delta <- diff(track[,1]) | |
track[1,2:3] <- c(start[1], start[2]) | |
while(size<length(times)){ | |
prop <- data.frame(x=rnorm(1,track[size,2],bm.sigma*sqrt(delta[size])), y=rnorm(1,track[size,3],bm.sigma*sqrt(delta[size]))) | |
coordinates(prop) <- ~x + y | |
wprop <- prop %over% hab | |
if((!is.na(wprop)) & runif(1,0,1)<=exp(wprop)){ | |
track[size+1,2:3] <- coordinates(prop) | |
size=size+1 | |
} | |
} | |
colnames(track) <- c("time", "x", "y") | |
track <- as.data.frame(track) | |
coordinates(track) <- ~x + y | |
return(track) | |
} | |
### | |
### Sample spatial quadrature points and find tile areas for quadrature weights | |
### | |
# getSpatialQuad <- function(n, type="hexagonal", track.data, environ.data, time.col, ...){ | |
# require(sp) | |
# sp.quad <- spsample(environ.data, n=n, type=type, ...) | |
# if(is.numeric(time.col)) tnms <- colnames(track.data@data)[time.col] | |
# else tnms <- time.col | |
# sp.quad <- SpatialPointsDataFrame(sp.quad, data=data.frame(obs.time=rep(0,nrow(sp.quad@coords)))) | |
# #sp.quad <- SpatialPointsDataFrame(sp.quad, data=over(sp.quad, environ.data)) | |
# sp.quad <- rbind(sp.quad, SpatialPointsDataFrame(SpatialPoints(track.data), data=data.frame(obs.time=track.data@data[,time.col]))) | |
# sp.quad@bbox <- bbox(environ.data) | |
# sp.poly <- voronoiPoly(sp.quad) | |
# labels <- sapply(sp.poly@polygons, FUN=function(x){return(x@ID)}) | |
# area <- sapply(sp.poly@polygons, FUN=function(x){return(x@area)}) | |
# sp.quad@data <- cbind(data.frame(ID=labels, area=area), sp.quad@data) | |
# return(list(sp.quad=sp.quad, sp.quad.poly=sp.poly)) | |
# } | |
# ### | |
# ### Sample temporal quadrature points and find interval lengths for quadrature weights | |
# ### | |
# getTempQuad <- function(n=200, track.data, time.col){ | |
# require(sp) | |
# if(missing(time.col)) stop("Argument 'time.col' is missing please specify!") | |
# times <- track.data@data[,time.col] - min(track.data@data[,time.col]) | |
# tm.quad <- sort(c(times, seq(min(times), max(times), length=n+2)[-c(1,n+2)])) | |
# tm.quad <- tm.quad[!duplicated(tm.quad)] | |
# lengths <- diff(c(tm.quad[1], sapply(c(2:length(tm.quad)), function(i,v){mean(v[(i-1):i])}, v=tm.quad), tm.quad[length(tm.quad)])) | |
# lengths[2] <- sum(lengths[1:2]) | |
# out <- data.frame(times=tm.quad[-1], length=lengths[-1], obs=ifelse(tm.quad%in%times, 1, 0)[-1]) | |
# return(out) | |
# } | |
### | |
### Cross spatial and temporal quadratures to obtain 3d locations and volumes | |
### | |
SpatTempQuadrature <- function(track.data, environ.data, time.col, time.int, tile.dim){ | |
require(sp) | |
require(rgeos) | |
environ.data$cellID <- 1:nrow(environ.data) | |
# make quad times | |
times <- track.data@data[,time.col] - min(track.data@data[,time.col]) | |
qt <- seq(0, ceiling(max(times)/time.int)*time.int, time.int) | |
qt <- sort(c(times, qt)) | |
qt <- qt[!duplicated(qt)] | |
lengths <- diff(c(qt[1], sapply(c(2:length(qt)), function(i,v){mean(v[(i-1):i])}, v=qt), qt[length(qt)])) | |
lengths[2] <- sum(lengths[1:2]) | |
temp.quad <- data.frame(times=qt[-1], length=lengths[-1], obs=ifelse(qt%in%times, 1, 0)[-1]) | |
temp.quad$x <- temp.quad$y <- NA | |
temp.quad$x[temp.quad$obs==1] <- coordinates(track.data)[-1,1] | |
temp.quad$y[temp.quad$obs==1] <- coordinates(track.data)[-1,2] | |
# Get disperion boundries | |
delta <- diff(times) | |
d1 <- spDists(track.data) | |
pwd <- d1[col(d1)==(row(d1)+1)] | |
disp.per.time <- pwd/delta | |
cut.vls <- quantile(delta, probs=seq(0,1,0.2)) | |
cut.vls[6] <- cut.vls[6]*1.1 | |
cut.vls[1] <- 0 | |
delta.cat <- cut(delta, cut.vls) | |
disp.rad.lookup <- aggregate(disp.per.time, list(delta.cat), FUN=max) | |
disp.rad.lookup$x <- disp.rad.lookup$x/tile.dim[1] | |
disp.rad.lookup$y <- (disp.rad.lookup$x*tile.dim[1])/tile.dim[2] | |
# Make spatial quad points at temporal quad points | |
cat("\nConstructing spatial x temporal quadrature data\n") | |
cat("Please be patient...\n") | |
mu <- track.data@coords[1,] | |
time.last <- 0 | |
df <- NULL | |
quad.time <- temp.quad$time | |
time.last <- 0 | |
pb <- txtProgressBar(min = 0, max = nrow(temp.quad), style = 3) | |
for(i in 1:nrow(temp.quad)){ | |
delta.last <- quad.time[i]-time.last | |
rad.x <- ceiling(disp.rad.lookup$x[findInterval(delta.last, cut.vls)]*delta.last) | |
rad.y <- ceiling(disp.rad.lookup$y[findInterval(delta.last, cut.vls)]*delta.last) | |
x.grid <- c(seq(mu[1]-rad.x*tile.dim[1], mu[1]-tile.dim[1], tile.dim[1]), mu[1], seq(mu[1]+tile.dim[1], mu[1]+rad.x*tile.dim[1], tile.dim[1])) | |
y.grid <- c(seq(mu[2]-rad.y*tile.dim[2], mu[2]-tile.dim[2], tile.dim[2]), mu[2], seq(mu[2]+tile.dim[2], mu[2]+rad.y*tile.dim[2], tile.dim[2])) | |
#grd.bbox <- matrix(c(mu[1]-(rad.x+0.5)*tile.dim[1], mu[2]-(rad.y+0.5)*tile.dim[2], mu[1]+(rad.x+0.5)*tile.dim[1], mu[2]+(rad.y+0.5)*tile.dim[2]), 2, 2) | |
#colnames(grd.bbox) <- c("min", "max") | |
#rownames(grd.bbox) <- c("x","y") | |
spqt <- as(SpatialPoints(expand.grid(x=x.grid, y=y.grid), proj4string=CRS(proj4string(environ.data))), "SpatialPixels") | |
spqtPoly <- as(spqt, "SpatialPolygons") | |
if(temp.quad$obs[i]==1) spqt <- rbind(SpatialPoints(temp.quad[i,c("x","y")], proj4string=CRS(proj4string(environ.data))), as(spqt,"SpatialPoints")) | |
else spqt <- as(spqt, "SpatialPoints") | |
#spqt@bbox <- grd.bbox | |
out <- as(spqt, "data.frame") | |
out$t <- temp.quad$time[i] | |
out$delta.last <- delta.last | |
out$area <- prod(tile.dim) | |
out$length<- temp.quad$length[i] | |
out$volume <- out$area*temp.quad$length[i] | |
out$response <- rep(0,length(out$area)) | |
if(temp.quad$obs[i]==1){ | |
out$area <- out$area/c(2, table(spqt%over%spqtPoly)) | |
out$response[1] <- 1 | |
} | |
out$response <- out$response/out$volume[1] | |
cov <- spqt %over% environ.data | |
out <- cbind(out, cbind(dist=spDistsN1(spqt, mu), cov)) | |
out$bmKern <- -0.5*out$dist^2/out$delta.last | |
out <- out[!is.na(cov[,1]),] | |
df <- rbind(df, out) | |
if(temp.quad$obs[i]==1){ | |
mu <- as.numeric(temp.quad[i,c("x","y")]) | |
time.last <- temp.quad$time[i] | |
} | |
setTxtProgressBar(pb, i) | |
} | |
close(pb) | |
class(df) <- c("stQuad", class(df)) | |
return(df) | |
} | |
### | |
### Create spatial quadrature data | |
### | |
SpatQuadrature <- function(track.data, environ.data){ | |
require(sp) | |
require(rgeos) | |
# Make spatial quad points at temporal quad points | |
cat("\nConstructing spatial quadrature data\n") | |
cat("Please be patient...\n") | |
saPoly <- as(environ.data, "SpatialPolygons") | |
spGrid <- SpatialPointsDataFrame(as(environ.data, "SpatialPoints"), data=data.frame(obs=rep(0,dim(environ.data)[1]))) | |
spTrack <- SpatialPointsDataFrame(as(track.data, "SpatialPoints"), data=data.frame(obs=rep(1,dim(track.data)[1]))) | |
spq <- rbind(spTrack, spGrid) | |
quad.data <- cbind(coordinates(spq), cellID=spq %over% saPoly, obs=spq@data$obs, spq %over% environ.data) | |
wts <- as.vector(prod(environ.data@grid@cellsize)/(spq %over% aggregate(spq, by=saPoly, FUN=length))[,1]) | |
quad.data$wts <- wts | |
quad.data$response <- quad.data$obs/quad.data$wts | |
class(quad.data) <- c("spatQuad", class(quad.data)) | |
names(quad.data)[1:2] <- c("x","y") | |
return(quad.data) | |
} | |
### | |
### Fit RSF model with STPP | |
### | |
stppRSF <- function(model, Q.data, use.gam=FALSE, ...){ | |
if(!inherits(Q.data, "stQuad")) stop("\nQ.data is not an object of class 'stQuad'! See function 'SpatTempQuadrature'\n") | |
if(!use.gam){ | |
fit <- glm(model, data=Q.data, family=quasi(link=log, variance=mu), weights=volume, ...) | |
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*length(fit$coef) | |
} | |
else{ | |
fit <- gam(model, data=Q.data, family=quasi(link=log, variance=mu), weights=volume, ...) | |
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*sum(fit$edf) | |
} | |
fit$maxLogLik <- -(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) | |
class(fit) <- c("stppRSF.fit", class(fit)) | |
return(fit) | |
} | |
### | |
### Fit RSF model with spatial process | |
### | |
spatRSF <- function(model, Q.data, use.gam=FALSE, ...){ | |
if(!inherits(Q.data, "spatQuad")) stop("\nQ.data is not an object of class 'spatQuad'! See function 'SpatQuadrature'\n") | |
if(!use.gam){ | |
fit <- glm(model, data=Q.data, family=quasi(link=log, variance=mu), weights=wts, ...) | |
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*length(fit$coef) | |
} | |
else{ | |
fit <- gam(model, data=Q.data, family=quasi(link=log, variance=mu), weights=wts, ...) | |
fit$aic <- 2*(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) + 2*sum(fit$edf) | |
} | |
fit$maxLogLik <- -(deviance(fit)/2 + sum(log(fit$prior.weights[fit$y!=0])) + sum(fit$y!=0)) | |
class(fit) <- c("spatRSF.fit", class(fit)) | |
return(fit) | |
} | |
summaryRSF <- function(object){ | |
if(!(inherits(object, "spatRSF.fit") | inherits(object, "stppRSF.fit"))) stop("\nThis is a summery function for 'stppRSF.fit' and 'spatRSF.fit' objects only/n") | |
return(summary(object, disp=1)) | |
} | |
### | |
### STPP Likelihood calculation | |
### | |
n2logLikStpp <- function(model, Q.data, lower=-Inf, upper=Inf, makeFUN=TRUE){ | |
mm <- model.matrix(model, Q.data) | |
y <- as.vector(Q.data$response) | |
if(inherits(Q.data,"spatQuad")) w <- as.vector(Q.data$wts) | |
else if(inherits(Q.data,"stQuad")) w <- as.vector(Q.data$volume) | |
else stop("Q.data argumaent is not an 'stQuad' or 'spatQuad' data object!\n") | |
return( | |
function(par){ | |
if(any(par<lower)) val <- Inf | |
else if(any(par>upper)) val <- Inf | |
else{ | |
lnL <- as.vector(mm%*%par) | |
val <- -2*crossprod(y*lnL - exp(lnL), w) | |
} | |
return(val) | |
} | |
) | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment