Created
December 11, 2013 21:30
-
-
Save dsjohnson/7918803 to your computer and use it in GitHub Desktop.
Building data for fur seal analysis in: Devin S. Johnson, Mevin B. Hooten, and Carey E. Kuhn (2013) Estimating animal resource selection from telemetry data using point process models. Journal of Animal Ecology 82:1155--1164
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(sp) | |
library(rgdal) | |
library(raster) | |
library(gstat) | |
library(rgeos) | |
library(automap) | |
library(adehabitatHR) | |
source("stpp_rsf_helper.R") | |
# Read in telemtry | |
tracks <- read.csv("nfs_analysis/2010_gps_filtered.csv") | |
tracks$gmt <- as.POSIXct(strptime(tracks$gmt, '%m/%d/%Y %H:%M'), tz="GMT") | |
tracks$id.trip<- paste(tracks$Id, tracks$tripno, sep="-") | |
coordinates(tracks) <- ~longitude + latitude | |
proj4string(tracks) <- CRS("+proj=longlat") | |
azed <- CRS("+proj=aeqd +lat_0=57.125 +lon_0=-170.284167") | |
tracks <- spTransform(tracks, azed) | |
tracks <- tracks[!tracks$Id%in%c("SP1008","SP1022"),] | |
# plot(tracks, pch=20, cex=0.3) | |
# Read in dive data | |
# dive <- read.csv("nfs_analysis/2010_dive_all.csv") | |
# dive$gmt <- as.POSIXct(strptime(dive$date_time, '%m/%d/%Y %H:%M'), tz="GMT") | |
# dive <- dive[(dive$depth>5 & dive$wigg>=5) | dive$depth>10,] | |
# Read in habitat boundary data | |
ak<-readOGR(dsn="/Users/Devin.Johnson/work/base_gis/alaska",layer="alaska_dnr") | |
ak<-spTransform(ak,CRS(proj4string(tracks))) | |
plot(ak, add=TRUE, col=gray(0.7)) | |
shelf <- readOGR(dsn="/Users/Devin.Johnson/work/base_gis/ebsshelf7",layer="ebsshelf7") | |
shelf <-spTransform(shelf,CRS(proj4string(tracks))) | |
# plot(shelf, add=TRUE) | |
#clip track data to self animals that started trips in August | |
tracks.sp <- tracks[tracks$island=="SP",] | |
ind <- as.vector(is.na(over(tracks.sp, shelf)) & coordinates(tracks.sp)[,2]< -7145.89) | |
outs <- unique(tracks.sp[ind,]@data$id.trip) | |
tracks.sp <- tracks.sp[!tracks.sp@data$id.trip%in%outs,] | |
ins <- unique(tracks.sp@data$id.trip[months(as.POSIXlt(tracks.sp@data$gmt))=="August"]) | |
tracks.sp <- tracks.sp[tracks.sp@data$id.trip%in%ins,] | |
tracks.sp@data$time.hr <- as.numeric(tracks.sp@data$gmt)/3600 | |
tracks.sp <- tracks.sp[tracks.sp@data$tripno==1,] | |
plot(shelf) | |
plot(tracks.sp, pch=20, cex=0.4, add=TRUE, col="red") | |
plot(ak, add=TRUE, col=gray(0.3)) | |
# Extract "foraging period" locations | |
id <- unique(tracks.sp@data[,c("Id","id.trip")]) | |
track.i <- tracks.sp[tracks.sp@data$id.trip==id[1,2],] | |
dive.i <- dive[dive$Id==id[1,1] & dive$gmt>=min(track.i@data$gmt) & dive$gmt<=max(track.i@data$gmt),] | |
dive.hours <- unique(trunc(dive.i$gmt, "hour")) | |
idx <- trunc(track.i$gmt,"hour")%in%dive.hours | |
tracks.sp.dive <- track.i[idx,] | |
for(i in 2:nrow(id)){ | |
track.i <- tracks.sp[tracks.sp@data$id.trip==id[i,2],] | |
dive.i <- dive[dive$Id==id[i,1] & dive$gmt>=min(track.i@data$gmt) & dive$gmt<=max(track.i@data$gmt),] | |
dive.hours <- unique(trunc(dive.i$gmt, "hour")) | |
idx <- trunc(track.i$gmt,"hour")%in%dive.hours | |
tracks.sp.dive <- rbind(tracks.sp.dive, track.i[idx,]) | |
} | |
# Read in som environmental data | |
grdpts <- makegrid(shelf, cellsize=c(9000,9000)) | |
coordinates(grdpts) <- ~x1+x2 | |
proj4string(grdpts) <- CRS(proj4string(tracks)) | |
grdpts <- raster(as(grdpts, "SpatialPixels")) | |
#Net Primary productivity | |
aug.npp <- raster("nfs_analysis/aug2010npp.txt", crs="+proj=longlat") | |
aug.npp.vals <- getValues(aug.npp) | |
values(aug.npp) <- ifelse(aug.npp.vals< -5000, NA, aug.npp.vals) | |
aug.npp <- projectRaster(from=aug.npp, to=grdpts) | |
# SST | |
aug.sst <- raster("nfs_analysis/aug2010sst.txt", crs="+proj=longlat +lon_wrap=180") | |
aug.sst.vals <- getValues(aug.sst) | |
values(aug.sst) <- ifelse(aug.sst.vals< -4e+33, NA, aug.sst.vals) | |
aug.sst <- projectRaster(from=aug.sst, to=grdpts) | |
# RACE survey stuff | |
ebs <- read.csv("nfs_analysis/ebs2009_2011.csv") | |
ebs <- ebs[ebs$YEAR==2010,] | |
bsslope <- read.csv("nfs_analysis/bsslope2002_2010.csv") | |
bsslope <- bsslope[bsslope$YEAR==2010,] | |
nbs <- read.csv("nfs_analysis/nbs1982_2010.csv") | |
nbs <- nbs[nbs$YEAR==2010,] | |
combo <- rbind(ebs, nbs, bsslope) | |
sites <- combo[!duplicated(combo$STATION),c(1:6, 12:17)] | |
sites.sp <- SpatialPointsDataFrame(sites[,c("LONGITUDE","LATITUDE")], data=sites[,-c(1:2)], | |
proj4string=CRS("+proj=longlat")) | |
sites.sp <- spTransform(sites.sp, CRS=CRS(proj4string(tracks.sp))) | |
raceHull <- gSimplify(gBuffer(sites.sp, width=40000), tol=12800) | |
# Walleye pollock | |
pollock <- combo[combo$COMMON=="walleye pollock",c(1:6,8)] | |
pollock <- merge(pollock, sites, all=TRUE) | |
pollock$NUMCPUE[is.na(pollock$NUMCPUE)] <- 0 | |
coordinates(pollock) <- ~LONGITUDE+LATITUDE | |
proj4string(pollock) <- CRS("+proj=longlat") | |
pollock <- spTransform(pollock, CRS(proj4string(tracks.sp))) | |
pollock@data$trans.pollock <- pollock@data$NUMCPUE^0.25 | |
mod <- vgm(psill=var(pollock@data$trans.pollock),model="Mat",range=200000,nugget=0, kappa=2) | |
fit.geo <- fit.variogram(variogram(trans.pollock~1,data=pollock), model=mod) | |
trans.pollock <- autoKrige(trans.pollock~1, input_data=pollock, new_data=as(grdpts, "SpatialGrid"))[[1]] | |
# Bottom temperature | |
sites.sp@data$BOT_TEMP[sites.sp@data$BOT_TEMP==-9999] <- NA | |
mod <- vgm(psill=var(sites.sp@data$BOT_TEMP, na.rm=TRUE), model="Sph",range=300000,nugget=0) | |
bot.temp <- autoKrige(BOT_TEMP~1, input_data=sites.sp[!is.na(sites.sp@data$BOT_TEMP),], | |
new_data=as(grdpts, "SpatialGrid"))[[1]] | |
# Create SpatialPixel objects | |
aug.hab <- as(aug.sst, "SpatialGridDataFrame") | |
aug.hab$npp <-getValues(aug.npp) | |
aug.hab$ln.npp <- log(getValues(aug.npp)) | |
aug.hab$trans.pollock <- trans.pollock$var1.pred | |
aug.hab$bot.temp <- bot.temp$var1.pred | |
names(aug.hab@data)[1] <- "sst" | |
aug.hab <- as(aug.hab, "SpatialPointsDataFrame") | |
aug.hab <- aug.hab[!is.na(over(aug.hab, raceHull)),] | |
aug.hab <- as(aug.hab, "SpatialPixelsDataFrame") | |
aug.hab <- aug.hab[!is.na(aug.hab@data$ln.npp),] | |
aug.hab <- aug.hab[!is.na(aug.hab@data$sst),] | |
# Obtain space-time quadrature points and tile areas | |
idx <- (tracks.sp@data$tripno==1) & (!tracks.sp@data$Id%in%c("SP1008","SP1022")) | |
tracks.sp <- tracks.sp[idx,] | |
anim.trip <- unique(tracks.sp@data[,c("Id","id.trip","tripno")]) | |
stQuadList <- list() | |
for(i in 1:nrow(anim.trip)){ | |
cat("\n Animal-trip: ", i, "/", nrow(anim.trip), "\n") | |
track.i <- tracks.sp[tracks.sp@data$Id==anim.trip[i,1],] | |
track.i <- track.i[c(TRUE, apply(diff(coordinates(track.i))==0, 1, sum)!=2),] | |
stQuadList[[i]] <- SpatTempQuadrature( track.data=track.i, | |
environ.data=aug.hab, time.col="time.hr", time.int=1, tile.dim=rep(4000,2)) | |
} | |
save(tracks.sp, aug.hab, stQuadList, ak, shelf, raceHull, file="nfs_analysis/JAE_analysis_data_st_20120720.RData") | |
# Obtain spatial quadrature points | |
kern <- makeKernHR(track.data=tracks.sp, environ.data=aug.hab, h=10800/1.96, time.col="Time", id.col="Id") | |
spatQuadData <- SpatQuadrature(track.data=tracks.sp, environ.data=aug.hab) | |
save(tracks.sp, aug.hab, kern, spatQuadData, ak, shelf, raceHull, file="nfs_analysis/JAE_analysis_data_spatial.RData") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment