Last active
March 18, 2024 20:54
-
-
Save dstahlke/6895643 to your computer and use it in GitHub Desktop.
Python code to compute the Lovasz, Schrijver, and Szegedy numbers for graphs.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Compute the Lovasz, Schrijver, and Szegedy numbers for graphs. | |
# | |
# A graph with 32 vertices takes under one second, so it's not the fastest. | |
# Probably the specialized code for Lovasz number from | |
# http://dollar.biz.uiowa.edu/~sburer/pmwiki/pmwiki.php%3Fn=Main.SDPLR%3Faction=logout.html | |
# would be much faster (I haven't tried it). | |
# Copyright (c) 2013 Daniel Stahlke ([email protected]) | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
# THE SOFTWARE. | |
from __future__ import print_function | |
import numpy as np | |
import cvxopt.base | |
import cvxopt.solvers | |
def parse_graph(G, complement=False): | |
''' | |
Takes a Sage graph, networkx graph, or adjacency matrix as argument, and returns | |
vertex count and edge list for the graph and its complement. | |
''' | |
if type(G).__module__+'.'+type(G).__name__ == 'networkx.classes.graph.Graph': | |
import networkx | |
G = networkx.convert_node_labels_to_integers(G) | |
nv = len(G) | |
edges = [ (i,j) for (i,j) in G.edges() if i != j ] | |
c_edges = [ (i,j) for (i,j) in networkx.complement(G).edges() if i != j ] | |
else: | |
if type(G).__module__+'.'+type(G).__name__ == 'sage.graphs.graph.Graph': | |
G = G.adjacency_matrix().numpy() | |
G = np.array(G) | |
nv = G.shape[0] | |
assert len(G.shape) == 2 and G.shape[1] == nv | |
assert np.all(G == G.T) | |
edges = [ (j,i) for i in range(nv) for j in range(i) if G[i,j] ] | |
c_edges = [ (j,i) for i in range(nv) for j in range(i) if not G[i,j] ] | |
for (i,j) in edges: | |
assert i < j | |
for (i,j) in c_edges: | |
assert i < j | |
if complement: | |
(edges, c_edges) = (c_edges, edges) | |
return (nv, edges, c_edges) | |
def lovasz_theta(G, long_return=False, complement=False): | |
''' | |
Computes the Lovasz theta number for a graph. | |
Takes either a Sage graph or an adjacency matrix as argument. | |
If the `long_return` flag is set, returns also the optimal B and Z matrices for the primal | |
and dual programs. | |
>>> import networkx | |
>>> G = networkx.cycle_graph(5) | |
>>> abs(np.sqrt(5) - lovasz_theta(G)) < 1e-9 | |
True | |
>>> # Vertices are {0,1}^5, edges between vertices with Hamming distance at most 2. | |
>>> H = [[ 1 if bin(i ^ j).count("1") <= 2 else 0 for i in range(32) ] for j in range(32) ] | |
>>> abs(16.0/3 - lovasz_theta(H)) < 1e-9 | |
True | |
>>> Hc = np.logical_not(np.array(H)) | |
>>> abs(6.0 - lovasz_theta(Hc)) < 1e-9 | |
True | |
''' | |
(nv, edges, _) = parse_graph(G, complement) | |
ne = len(edges) | |
# This case needs to be handled specially. | |
if nv == 1: | |
return 1.0 | |
c = cvxopt.matrix([0.0]*ne + [1.0]) | |
G1 = cvxopt.spmatrix(0, [], [], (nv*nv, ne+1)) | |
for (k, (i, j)) in enumerate(edges): | |
G1[i*nv+j, k] = 1 | |
G1[j*nv+i, k] = 1 | |
for i in range(nv): | |
G1[i*nv+i, ne] = 1 | |
G1 = -G1 | |
h1 = -cvxopt.matrix(1.0, (nv, nv)) | |
sol = cvxopt.solvers.sdp(c, Gs=[G1], hs=[h1]) | |
if long_return: | |
theta = sol['x'][ne] | |
Z = np.array(sol['ss'][0]) | |
B = np.array(sol['zs'][0]) | |
return { 'theta': theta, 'Z': Z, 'B': B } | |
else: | |
return sol['x'][ne] | |
def schrijver_theta(G, long_return=False, complement=False): | |
''' | |
Computes the Schrijver theta^- number for a graph. | |
Takes either a Sage graph or an adjacency matrix as argument. | |
If the `long_return` flag is set, returns also the optimal B and Z matrices for the primal | |
and dual programs. | |
>>> import networkx | |
>>> G = networkx.cycle_graph(5) | |
>>> abs(np.sqrt(5) - schrijver_theta(G)) < 1e-9 | |
True | |
>>> # Vertices are {0,1}^5, edges between vertices with Hamming distance at most 2. | |
>>> H = [[ 1 if bin(i ^ j).count("1") <= 2 else 0 for i in range(32) ] for j in range(32) ] | |
>>> abs(4 - schrijver_theta(H)) < 1e-9 | |
True | |
>>> Hc = np.logical_not(np.array(H)) | |
>>> abs(6.0 - schrijver_theta(Hc)) < 1e-9 | |
True | |
''' | |
(nv, G_edges, Gc_edges) = parse_graph(G, complement) | |
neG = len(G_edges) | |
neGc = len(Gc_edges) | |
# This case needs to be handled specially. | |
if nv == 1: | |
return 1.0 | |
assert neG + neGc == nv*(nv-1) // 2 | |
c = cvxopt.matrix([0.0]*(neG+neGc) + [1.0]) | |
clen = neG+neGc+1 | |
G0 = cvxopt.spmatrix(0, [], [], (neGc, clen)) | |
for i in range(neGc): | |
G0[i, i] = 1 | |
h0 = cvxopt.matrix(0.0, (neGc, 1)) | |
G1 = cvxopt.spmatrix(0, [], [], (nv*nv, clen)) | |
k = 0 | |
for (i, j) in Gc_edges: | |
G1[i*nv+j, k] = 1 | |
G1[j*nv+i, k] = 1 | |
k += 1 | |
for (i, j) in G_edges: | |
G1[i*nv+j, k] = 1 | |
G1[j*nv+i, k] = 1 | |
k += 1 | |
for i in range(nv): | |
G1[i*nv+i, k] = 1 | |
k += 1 | |
assert k == clen | |
G1 = -G1 | |
h1 = -cvxopt.matrix(1.0, (nv, nv)) | |
sol = cvxopt.solvers.sdp(c, Gl=G0, hl=h0, Gs=[G1], hs=[h1]) | |
if long_return: | |
theta = sol['x'][clen-1] | |
Z = np.array(sol['ss'][0]) | |
B = np.array(sol['zs'][0]) | |
return { 'theta': theta, 'Z': Z, 'B': B } | |
else: | |
return sol['x'][clen-1] | |
def szegedy_theta(G, long_return=False, complement=False): | |
''' | |
Computes the Szegedy theta^+ number for a graph. | |
Takes either a Sage graph or an adjacency matrix as argument. | |
If the `long_return` flag is set, returns also the optimal B and Z matrices for the primal | |
and dual programs. | |
>>> import networkx | |
>>> G = networkx.cycle_graph(5) | |
>>> abs(np.sqrt(5) - szegedy_theta(G)) < 1e-9 | |
True | |
>>> # Vertices are {0,1}^5, edges between vertices with Hamming distance at most 2. | |
>>> H = [[ 1 if bin(i ^ j).count("1") <= 2 else 0 for i in range(32) ] for j in range(32) ] | |
>>> abs(16.0/3 - szegedy_theta(H)) < 1e-9 | |
True | |
>>> Hc = np.logical_not(np.array(H)) | |
>>> abs(8.0 - szegedy_theta(Hc)) < 1e-9 | |
True | |
''' | |
(nv, edges, _) = parse_graph(G, complement) | |
ne = len(edges) | |
# This case needs to be handled specially. | |
if nv == 1: | |
return 1.0 | |
c = cvxopt.matrix([0.0]*ne + [1.0]) | |
G0 = cvxopt.spmatrix(0, [], [], (ne, ne+1)) | |
for i in range(ne): | |
G0[i, i] = -1 | |
h0 = cvxopt.matrix(0.0, (ne, 1)) | |
G1 = cvxopt.spmatrix(0, [], [], (nv*nv, ne+1)) | |
for (k, (i, j)) in enumerate(edges): | |
G1[i*nv+j, k] = 1 | |
G1[j*nv+i, k] = 1 | |
for i in range(nv): | |
G1[i*nv+i, ne] = 1 | |
G1 = -G1 | |
h1 = -cvxopt.matrix(1.0, (nv, nv)) | |
sol = cvxopt.solvers.sdp(c, Gl=G0, hl=h0, Gs=[G1], hs=[h1]) | |
if long_return: | |
theta = sol['x'][ne] | |
Z = np.array(sol['ss'][0]) | |
B = np.array(sol['zs'][0]) | |
return { 'theta': theta, 'Z': Z, 'B': B } | |
else: | |
return sol['x'][ne] | |
# Aliases | |
theta = lovasz_theta | |
thm = schrijver_theta | |
thp = szegedy_theta | |
# Functions on the complement of a graph | |
def thbar(G, long_return=False): | |
return lovasz_theta(G, long_return, complement=True) | |
def thmbar(G, long_return=False): | |
return schrijver_theta(G, long_return, complement=True) | |
def thpbar(G, long_return=False): | |
return szegedy_theta(G, long_return, complement=True) | |
if __name__ == "__main__": | |
print("Running doctests.") | |
cvxopt.solvers.options['show_progress'] = False | |
cvxopt.solvers.options['abstol'] = float(1e-10) | |
cvxopt.solvers.options['reltol'] = float(1e-10) | |
import doctest | |
doctest.testmod() | |
print('Done.') | |
# def hamming(n_bits, dist_eval): | |
# N = 2**n_bits | |
# H = [[ 1 if dist_eval(bin(i ^ j).count("1")) else 0 for i in range(N) ] for j in range(N) ] | |
# return H | |
# | |
# n = 6 | |
# H = hamming(n, lambda x: x >= n//2) | |
# # Test graphs from sage database (must be run from within Sage) | |
# from sage.all import *; | |
# for nverts in range(9): | |
# Q = GraphQuery(GraphDatabase(), display_cols=['graph6','lovasz_number'], num_vertices=nverts) | |
# print 'nverts:', nverts, 'cnt:', Q.number_of() | |
# | |
# cur = Q.__database__.__connection__.cursor() | |
# cur.execute(Q.__query_string__, tuple(str(s) for s in Q.__param_tuple__)) | |
# glist = list(cur) | |
# | |
# for (g6, lov) in glist: | |
# G = Graph(str(g6), format='graph6') | |
# err = lovasz_theta(G) - lov | |
# if abs(err) > 3e-6: | |
# print g6, err |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment