Last active
August 29, 2015 14:01
-
-
Save dstokes/62452b0b483662a71871 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// averaged scores across layer nets | |
{ '0': 3.7868791304080087, | |
'1': 1.2131208695919908, | |
BYTES_PER_ELEMENT: 8, | |
get: [Function: get], | |
set: [Function: set], | |
slice: [Function: slice], | |
subarray: [Function: subarray], | |
buffer: | |
{ '0': 252, | |
'1': 14, | |
'2': 24, | |
'3': 73, | |
'4': 135, | |
'5': 75, | |
'6': 14, | |
'7': 64, | |
'8': 6, | |
'9': 226, | |
'10': 207, | |
'11': 109, | |
'12': 241, | |
'13': 104, | |
'14': 243, | |
'15': 63, | |
slice: [Function: slice], | |
byteLength: 16 }, | |
length: 2, | |
byteOffset: 0, | |
byteLength: 16 } | |
// stats object for prediction | |
{ maxi: 0, | |
maxv: 3.7868791304080087, | |
mini: 1, | |
minv: 1.2131208695919908, | |
dv: 2.573758260816018 } |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var maxmin = function(w) { | |
if(w.length === 0) { return {}; } // ... ;s | |
var maxv = w[0]; | |
var minv = w[0]; | |
var maxi = 0; | |
var mini = 0; | |
var n = w.length; | |
for(var i=1;i<n;i++) { | |
if(w[i] > maxv) { maxv = w[i]; maxi = i; } | |
if(w[i] < minv) { minv = w[i]; mini = i; } | |
} | |
return {maxi: maxi, maxv: maxv, mini: mini, minv: minv, dv:maxv-minv}; | |
} | |
// returns prediction scores for given test data point, as Vol | |
// uses an averaged prediction from the best ensemble_size models | |
// x is a Vol. | |
predict_soft: function(data) { | |
// forward prop the best networks | |
// and accumulate probabilities at last layer into a an output Vol | |
var nv = Math.min(this.ensemble_size, this.evaluated_candidates.length); | |
if(nv === 0) { return new convnetjs.Vol(0,0,0); } // not sure what to do here? we're not ready yet | |
var xout, n; | |
for(var j=0;j<nv;j++) { | |
var net = this.evaluated_candidates[j].net; | |
var x = net.forward(data); | |
if(j===0) { | |
xout = x; | |
n = x.w.length; | |
} else { | |
// add it on | |
for(var d=0;d<n;d++) { | |
xout.w[d] += x.w[d]; | |
} | |
} | |
} | |
// produce average | |
for(var d=0;d<n;d++) { | |
xout.w[d] /= n; | |
} | |
return xout; | |
}, | |
predict: function(data) { | |
var xout = this.predict_soft(data); | |
if(xout.w.length !== 0) { | |
var stats = maxmin(xout.w); | |
var predicted_label = stats.maxi; | |
} else { | |
var predicted_label = -1; // error out | |
} | |
return predicted_label; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment