Created
February 15, 2022 15:20
-
-
Save dsyme/667db9244eae546887bc22c2a2c523ce to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import torch | |
import numpy as np | |
import pprint | |
import time | |
import os | |
import glob | |
import pprint | |
import sys | |
from torchvision import datasets, transforms | |
from torch.utils.data import DataLoader | |
from util import sgd_rev, sgd_fwd, run, runtime, create_path, get_time_stamp, load_text, save_text, sgd_rev_train, sgd_fwd_train, cross_entropy, weight_init_kaiming, weight_init_bias, weight_init_conv2d, bias_init_conv2d, conv2d, maxpool2d, batchnorm2d, dropout, adaptiveavgpool2d, argmax, days_hours_mins_secs_str | |
parser = argparse.ArgumentParser(description='train', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument('--mode', choices=['run', 'plot'], nargs='?', default=None, type=str, required=True) | |
parser.add_argument('--dir', type=str, default=None) | |
parser.add_argument('--lr', type=float, default=0.0002) | |
parser.add_argument('--lr_decay', type=float, default=0.0001) | |
parser.add_argument('--threshold', type=float, default=0.00001) | |
parser.add_argument('--n', type=int, default=None) | |
parser.add_argument('--runs', type=int, default=1) | |
parser.add_argument('--batch_size', type=int, default=128) | |
parser.add_argument('--num_workers', type=int, default=8) | |
parser.add_argument('--valid_every', type=int, default=500) | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--model', type=str, choices=['logreg', 'mlp', 'cnn', 'cnn2', 'cnn4', 'cnn4b', 'vgg16', 'resnet18', 'resnet50'], default='logreg') | |
parser.add_argument('--optimizer', type=str, choices=['sgd', 'sgdn', 'adam'], default='sgd') | |
parser.add_argument('--momentum', type=float, default=0.2) | |
parser.add_argument('--skiprev', action='store_true', ) | |
parser.add_argument('--skipfwd', action='store_true', ) | |
opt = parser.parse_args() | |
print('Arguments:\n{}\n'.format(' '.join(sys.argv[1:]))) | |
print('Config:') | |
pprint.pprint(vars(opt), depth=2, width=50) | |
print() | |
device = torch.device(opt.device) | |
time_start = time.time() | |
def logreg_params(): | |
return {'w1': weight_init_kaiming(28*28, 10).to(device), | |
'b1': weight_init_bias(10).to(device)} | |
def logreg_eval(params, x): | |
x = x.view(-1, 28*28) | |
x = x.matmul(params['w1']) | |
x = x + params['b1'] | |
# x = x.matmul(params['w2']) | |
# x = x + params['b2'] | |
return x | |
def logreg_loss(params, x, target): | |
y = logreg_eval(params, x) | |
loss = cross_entropy(y, target) | |
predicted = argmax(y) | |
num_correct = (predicted == target).sum().item() | |
return loss, num_correct |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment