Skip to content

Instantly share code, notes, and snippets.

@dtellogaete
Last active February 13, 2020 15:45
Show Gist options
  • Save dtellogaete/5b075dad06014e34a880a70f3fae2751 to your computer and use it in GitHub Desktop.
Save dtellogaete/5b075dad06014e34a880a70f3fae2751 to your computer and use it in GitHub Desktop.
# Importar el dataset
dataset = read.csv('Admission_Predict_Ver1.1.csv', sep = ",")
dataset = dataset[1:length(dataset$GRE.Score), c(2,9)]
# Selección conjunto de entrenamiento y test
library(caTools)
set.seed(0)
split = sample.split(dataset$GRE.Score, SplitRatio = 0.75)
training = subset(dataset, split == TRUE)
testing = subset(dataset, split == FALSE)
# Escalado de variables
training = data.frame(scale(training))
testing = data.frame(scale(testing))
# Aplicación del modelo
linearRegression = LinearRegressionGD(lrate = 0.1, niter = 20000,
X = as.numeric(training$GRE.Score),
y = as.numeric(training$Chance.of.Admit),
c(0.1, 1.0))
ypred = testing$GRE.Score*linearRegression[2]+
linearRegression[1]
# Aplicación del modelo con la librería de R
regression = lm(formula = Chance.of.Admit ~ GRE.Score,
data = training)
# Representación Grafíca
library(ggplot2)
ggplot()+
geom_point(aes(x=testing$GRE.Score,
y=testing$Chance.of.Admit),
colour = "red")+
geom_line(aes(x=testing$GRE.Score,
y=ypred, colour = "blue"),
alpha = 1,
size= 0.8)+
geom_line(aes(x=testing$GRE.Score,
y=predict(regression, newdata = testing),
colour = "green"), alpha = 1,
size= 0.8)+
scale_color_discrete(name = "Modelo", labels = c("Descenso por gradiente",
"Regresión Lineal (lm)"))+
ggtitle("Probabilidad admisión vs GRE Score (Conjunto de Test)")+
xlab("GRE Score")+
ylab("Probabilidad admisión a Postgrado")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment