-
(f) is one-to-one ( \Leftrightarrow ) ( \forall a,b \in X, f(a) = f(b) \rightarrow a = b )
-
(f) is onto ( \Leftrightarrow ) ( \forall y \in Y, \exists x \in X \text{ such that } f(x) = y )
-
(f) has one-to-one correspondence ( \Leftrightarrow ) (f) is both one-to-one AND onto.
-
(f^{-1}(x)) is the inverse of (f(x)) ( \Leftrightarrow ) ( \forall x \in X, f^{-1}(f(x)) = x )
-
(\R) is reflexive ( \Leftrightarrow ) ( \forall x \in S, x \R x )
-
(\R) is irreflexive ( \Leftrightarrow ) ( \NOT \exists x \in S, x \R x )
-
(\R) is symmetric ( \Leftrightarrow ) ( \forall a, b \in S, a \R b \rightarrow b \R a )
-
(\R) is asymmetric ( \Leftrightarrow ) ( \NOT \exists a, b \in S, a \R b \rightarrow b \R a )
-
(\R) is antisymmetric ( \Leftrightarrow ) ( \forall a, b \in S, (a \R b \wedge b \R a) \rightarrow a = b )
-
(\R) is transitive ( \Leftrightarrow ) ( \forall a, b, c \in S (a \R b \wedge b \R c) \rightarrow a \R c )
-
(\R) is an equivalence relation ( \Leftrightarrow ) (\R) is reflexive, symmetric AND transitive
-
(\R) is a partial order relation ( \Leftrightarrow ) (\R) is reflexive, antisymmetric AND transitive
-
(\R) is a total order relation ( \Leftrightarrow ) (\R) is a partial order relation AND (\forall a,b \in S, a \R b \vee b \R a )
Created
December 11, 2012 07:41
-
-
Save dtinth/4256628 to your computer and use it in GitHub Desktop.
Functions and Relations
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment