Skip to content

Instantly share code, notes, and snippets.

@ducha-aiki
Created October 21, 2015 18:37
Show Gist options
  • Save ducha-aiki/297ea977a0b72ad8f8f6 to your computer and use it in GitHub Desktop.
Save ducha-aiki/297ea977a0b72ad8f8f6 to your computer and use it in GitHub Desktop.
cifar10_2K_in-place
I1021 21:37:50.680150 3320 caffe.cpp:184] Using GPUs 0
I1021 21:37:50.799264 3320 solver.cpp:47] Initializing solver from parameters:
test_iter: 10
test_interval: 1000
base_lr: 0.001
display: 100
max_iter: 5000
lr_policy: "poly"
power: 0.5
momentum: 0.9
snapshot_prefix: "examples/cifar10_full_sigmoid_bn"
solver_mode: GPU
device_id: 0
net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt"
I1021 21:37:50.799298 3320 solver.cpp:90] Creating training net from net file: examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt
I1021 21:37:50.799721 3320 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer cifar
I1021 21:37:50.799731 3320 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer bn1
I1021 21:37:50.799734 3320 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer bn2
I1021 21:37:50.799737 3320 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer bn3
I1021 21:37:50.799741 3320 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I1021 21:37:50.799859 3320 net.cpp:49] Initializing net from parameters:
name: "CIFAR10_full"
state {
phase: TRAIN
}
layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "examples/cifar10/mean.binaryproto"
}
data_param {
source: "examples/cifar10/cifar10_train_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "pool1"
top: "bn1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
include {
phase: TRAIN
}
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "Sigmoid1"
type: "Sigmoid"
bottom: "bn1"
top: "Sigmoid1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "Sigmoid1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
include {
phase: TRAIN
}
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "Sigmoid2"
type: "Sigmoid"
bottom: "conv2"
top: "Sigmoid2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "Sigmoid2"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 1
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "bn3"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
include {
phase: TRAIN
}
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "Sigmoid3"
type: "Sigmoid"
bottom: "conv3"
top: "Sigmoid3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "Sigmoid3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool3"
top: "ip1"
param {
lr_mult: 1
decay_mult: 250
}
param {
lr_mult: 0.2
decay_mult: 0
}
inner_product_param {
num_output: 10
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip1"
bottom: "label"
top: "loss"
}
I1021 21:37:50.799973 3320 layer_factory.hpp:76] Creating layer cifar
I1021 21:37:50.800462 3320 net.cpp:106] Creating Layer cifar
I1021 21:37:50.800488 3320 net.cpp:411] cifar -> data
I1021 21:37:50.800518 3320 net.cpp:411] cifar -> label
I1021 21:37:50.800537 3320 data_transformer.cpp:25] Loading mean file from: examples/cifar10/mean.binaryproto
I1021 21:37:50.801208 3322 db_lmdb.cpp:38] Opened lmdb examples/cifar10/cifar10_train_lmdb
I1021 21:37:50.813796 3320 data_layer.cpp:45] output data size: 100,3,32,32
I1021 21:37:50.815940 3320 net.cpp:150] Setting up cifar
I1021 21:37:50.815994 3320 net.cpp:157] Top shape: 100 3 32 32 (307200)
I1021 21:37:50.816002 3320 net.cpp:157] Top shape: 100 (100)
I1021 21:37:50.816004 3320 net.cpp:165] Memory required for data: 1229200
I1021 21:37:50.816011 3320 layer_factory.hpp:76] Creating layer conv1
I1021 21:37:50.816025 3320 net.cpp:106] Creating Layer conv1
I1021 21:37:50.816030 3320 net.cpp:454] conv1 <- data
I1021 21:37:50.816040 3320 net.cpp:411] conv1 -> conv1
I1021 21:37:50.816601 3320 net.cpp:150] Setting up conv1
I1021 21:37:50.816609 3320 net.cpp:157] Top shape: 100 32 32 32 (3276800)
I1021 21:37:50.816620 3320 net.cpp:165] Memory required for data: 14336400
I1021 21:37:50.816633 3320 layer_factory.hpp:76] Creating layer pool1
I1021 21:37:50.816648 3320 net.cpp:106] Creating Layer pool1
I1021 21:37:50.816650 3320 net.cpp:454] pool1 <- conv1
I1021 21:37:50.816653 3320 net.cpp:411] pool1 -> pool1
I1021 21:37:50.816694 3320 net.cpp:150] Setting up pool1
I1021 21:37:50.816709 3320 net.cpp:157] Top shape: 100 32 16 16 (819200)
I1021 21:37:50.816711 3320 net.cpp:165] Memory required for data: 17613200
I1021 21:37:50.816714 3320 layer_factory.hpp:76] Creating layer bn1
I1021 21:37:50.816718 3320 net.cpp:106] Creating Layer bn1
I1021 21:37:50.816720 3320 net.cpp:454] bn1 <- pool1
I1021 21:37:50.816725 3320 net.cpp:411] bn1 -> bn1
I1021 21:37:50.816892 3320 net.cpp:150] Setting up bn1
I1021 21:37:50.816896 3320 net.cpp:157] Top shape: 100 32 16 16 (819200)
I1021 21:37:50.816898 3320 net.cpp:165] Memory required for data: 20890000
I1021 21:37:50.816915 3320 layer_factory.hpp:76] Creating layer Sigmoid1
I1021 21:37:50.816937 3320 net.cpp:106] Creating Layer Sigmoid1
I1021 21:37:50.816941 3320 net.cpp:454] Sigmoid1 <- bn1
I1021 21:37:50.816943 3320 net.cpp:411] Sigmoid1 -> Sigmoid1
I1021 21:37:50.816990 3320 net.cpp:150] Setting up Sigmoid1
I1021 21:37:50.816994 3320 net.cpp:157] Top shape: 100 32 16 16 (819200)
I1021 21:37:50.817005 3320 net.cpp:165] Memory required for data: 24166800
I1021 21:37:50.817009 3320 layer_factory.hpp:76] Creating layer conv2
I1021 21:37:50.817025 3320 net.cpp:106] Creating Layer conv2
I1021 21:37:50.817028 3320 net.cpp:454] conv2 <- Sigmoid1
I1021 21:37:50.817031 3320 net.cpp:411] conv2 -> conv2
I1021 21:37:50.818266 3320 net.cpp:150] Setting up conv2
I1021 21:37:50.818275 3320 net.cpp:157] Top shape: 100 32 16 16 (819200)
I1021 21:37:50.818277 3320 net.cpp:165] Memory required for data: 27443600
I1021 21:37:50.818282 3320 layer_factory.hpp:76] Creating layer bn2
I1021 21:37:50.818287 3320 net.cpp:106] Creating Layer bn2
I1021 21:37:50.818289 3320 net.cpp:454] bn2 <- conv2
I1021 21:37:50.818294 3320 net.cpp:397] bn2 -> conv2 (in-place)
I1021 21:37:50.818403 3320 net.cpp:150] Setting up bn2
I1021 21:37:50.818408 3320 net.cpp:157] Top shape: 100 32 16 16 (819200)
I1021 21:37:50.818408 3320 net.cpp:165] Memory required for data: 30720400
I1021 21:37:50.818414 3320 layer_factory.hpp:76] Creating layer Sigmoid2
I1021 21:37:50.818418 3320 net.cpp:106] Creating Layer Sigmoid2
I1021 21:37:50.818420 3320 net.cpp:454] Sigmoid2 <- conv2
I1021 21:37:50.818423 3320 net.cpp:411] Sigmoid2 -> Sigmoid2
I1021 21:37:50.818456 3320 net.cpp:150] Setting up Sigmoid2
I1021 21:37:50.818460 3320 net.cpp:157] Top shape: 100 32 16 16 (819200)
I1021 21:37:50.818462 3320 net.cpp:165] Memory required for data: 33997200
I1021 21:37:50.818473 3320 layer_factory.hpp:76] Creating layer pool2
I1021 21:37:50.818480 3320 net.cpp:106] Creating Layer pool2
I1021 21:37:50.818480 3320 net.cpp:454] pool2 <- Sigmoid2
I1021 21:37:50.818493 3320 net.cpp:411] pool2 -> pool2
I1021 21:37:50.818506 3320 net.cpp:150] Setting up pool2
I1021 21:37:50.818511 3320 net.cpp:157] Top shape: 100 32 8 8 (204800)
I1021 21:37:50.818513 3320 net.cpp:165] Memory required for data: 34816400
I1021 21:37:50.818514 3320 layer_factory.hpp:76] Creating layer conv3
I1021 21:37:50.818521 3320 net.cpp:106] Creating Layer conv3
I1021 21:37:50.818523 3320 net.cpp:454] conv3 <- pool2
I1021 21:37:50.818526 3320 net.cpp:411] conv3 -> conv3
I1021 21:37:50.819829 3320 net.cpp:150] Setting up conv3
I1021 21:37:50.819834 3320 net.cpp:157] Top shape: 100 64 8 8 (409600)
I1021 21:37:50.819836 3320 net.cpp:165] Memory required for data: 36454800
I1021 21:37:50.819840 3320 layer_factory.hpp:76] Creating layer bn3
I1021 21:37:50.819845 3320 net.cpp:106] Creating Layer bn3
I1021 21:37:50.819847 3320 net.cpp:454] bn3 <- conv3
I1021 21:37:50.819851 3320 net.cpp:397] bn3 -> conv3 (in-place)
I1021 21:37:50.819967 3320 net.cpp:150] Setting up bn3
I1021 21:37:50.819970 3320 net.cpp:157] Top shape: 100 64 8 8 (409600)
I1021 21:37:50.819972 3320 net.cpp:165] Memory required for data: 38093200
I1021 21:37:50.819977 3320 layer_factory.hpp:76] Creating layer Sigmoid3
I1021 21:37:50.819980 3320 net.cpp:106] Creating Layer Sigmoid3
I1021 21:37:50.819983 3320 net.cpp:454] Sigmoid3 <- conv3
I1021 21:37:50.819984 3320 net.cpp:411] Sigmoid3 -> Sigmoid3
I1021 21:37:50.819998 3320 net.cpp:150] Setting up Sigmoid3
I1021 21:37:50.820001 3320 net.cpp:157] Top shape: 100 64 8 8 (409600)
I1021 21:37:50.820003 3320 net.cpp:165] Memory required for data: 39731600
I1021 21:37:50.820004 3320 layer_factory.hpp:76] Creating layer pool3
I1021 21:37:50.820008 3320 net.cpp:106] Creating Layer pool3
I1021 21:37:50.820009 3320 net.cpp:454] pool3 <- Sigmoid3
I1021 21:37:50.820013 3320 net.cpp:411] pool3 -> pool3
I1021 21:37:50.820024 3320 net.cpp:150] Setting up pool3
I1021 21:37:50.820026 3320 net.cpp:157] Top shape: 100 64 4 4 (102400)
I1021 21:37:50.820029 3320 net.cpp:165] Memory required for data: 40141200
I1021 21:37:50.820030 3320 layer_factory.hpp:76] Creating layer ip1
I1021 21:37:50.820040 3320 net.cpp:106] Creating Layer ip1
I1021 21:37:50.820044 3320 net.cpp:454] ip1 <- pool3
I1021 21:37:50.820046 3320 net.cpp:411] ip1 -> ip1
I1021 21:37:50.820720 3320 net.cpp:150] Setting up ip1
I1021 21:37:50.820727 3320 net.cpp:157] Top shape: 100 10 (1000)
I1021 21:37:50.820729 3320 net.cpp:165] Memory required for data: 40145200
I1021 21:37:50.820740 3320 layer_factory.hpp:76] Creating layer loss
I1021 21:37:50.820746 3320 net.cpp:106] Creating Layer loss
I1021 21:37:50.820749 3320 net.cpp:454] loss <- ip1
I1021 21:37:50.820752 3320 net.cpp:454] loss <- label
I1021 21:37:50.820757 3320 net.cpp:411] loss -> loss
I1021 21:37:50.820765 3320 layer_factory.hpp:76] Creating layer loss
I1021 21:37:50.820822 3320 net.cpp:150] Setting up loss
I1021 21:37:50.820827 3320 net.cpp:157] Top shape: (1)
I1021 21:37:50.820828 3320 net.cpp:160] with loss weight 1
I1021 21:37:50.820844 3320 net.cpp:165] Memory required for data: 40145204
I1021 21:37:50.820847 3320 net.cpp:226] loss needs backward computation.
I1021 21:37:50.820848 3320 net.cpp:226] ip1 needs backward computation.
I1021 21:37:50.820850 3320 net.cpp:226] pool3 needs backward computation.
I1021 21:37:50.820852 3320 net.cpp:226] Sigmoid3 needs backward computation.
I1021 21:37:50.820854 3320 net.cpp:226] bn3 needs backward computation.
I1021 21:37:50.820857 3320 net.cpp:226] conv3 needs backward computation.
I1021 21:37:50.820858 3320 net.cpp:226] pool2 needs backward computation.
I1021 21:37:50.820860 3320 net.cpp:226] Sigmoid2 needs backward computation.
I1021 21:37:50.820873 3320 net.cpp:226] bn2 needs backward computation.
I1021 21:37:50.820874 3320 net.cpp:226] conv2 needs backward computation.
I1021 21:37:50.820876 3320 net.cpp:226] Sigmoid1 needs backward computation.
I1021 21:37:50.820878 3320 net.cpp:226] bn1 needs backward computation.
I1021 21:37:50.820880 3320 net.cpp:226] pool1 needs backward computation.
I1021 21:37:50.820883 3320 net.cpp:226] conv1 needs backward computation.
I1021 21:37:50.820884 3320 net.cpp:228] cifar does not need backward computation.
I1021 21:37:50.820886 3320 net.cpp:270] This network produces output loss
I1021 21:37:50.820894 3320 net.cpp:283] Network initialization done.
I1021 21:37:50.821257 3320 solver.cpp:180] Creating test net (#0) specified by net file: examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt
I1021 21:37:50.821281 3320 net.cpp:322] The NetState phase (1) differed from the phase (0) specified by a rule in layer cifar
I1021 21:37:50.821287 3320 net.cpp:322] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn1
I1021 21:37:50.821291 3320 net.cpp:322] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn2
I1021 21:37:50.821295 3320 net.cpp:322] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn3
I1021 21:37:50.821380 3320 net.cpp:49] Initializing net from parameters:
name: "CIFAR10_full"
state {
phase: TEST
}
layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_file: "examples/cifar10/mean.binaryproto"
}
data_param {
source: "examples/cifar10/cifar10_test_lmdb"
batch_size: 1000
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "pool1"
top: "bn1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Sigmoid1"
type: "Sigmoid"
bottom: "bn1"
top: "Sigmoid1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "Sigmoid1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Sigmoid2"
type: "Sigmoid"
bottom: "conv2"
top: "Sigmoid2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "Sigmoid2"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 1
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "bn3"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "Sigmoid3"
type: "Sigmoid"
bottom: "conv3"
top: "Sigmoid3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "Sigmoid3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool3"
top: "ip1"
param {
lr_mult: 1
decay_mult: 250
}
param {
lr_mult: 0.2
decay_mult: 0
}
inner_product_param {
num_output: 10
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip1"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip1"
bottom: "label"
top: "loss"
}
I1021 21:37:50.821447 3320 layer_factory.hpp:76] Creating layer cifar
I1021 21:37:50.821905 3320 net.cpp:106] Creating Layer cifar
I1021 21:37:50.821918 3320 net.cpp:411] cifar -> data
I1021 21:37:50.821924 3320 net.cpp:411] cifar -> label
I1021 21:37:50.821929 3320 data_transformer.cpp:25] Loading mean file from: examples/cifar10/mean.binaryproto
I1021 21:37:50.822619 3324 db_lmdb.cpp:38] Opened lmdb examples/cifar10/cifar10_test_lmdb
I1021 21:37:50.822688 3320 data_layer.cpp:45] output data size: 1000,3,32,32
I1021 21:37:50.842681 3320 net.cpp:150] Setting up cifar
I1021 21:37:50.842721 3320 net.cpp:157] Top shape: 1000 3 32 32 (3072000)
I1021 21:37:50.842725 3320 net.cpp:157] Top shape: 1000 (1000)
I1021 21:37:50.842727 3320 net.cpp:165] Memory required for data: 12292000
I1021 21:37:50.842742 3320 layer_factory.hpp:76] Creating layer label_cifar_1_split
I1021 21:37:50.842754 3320 net.cpp:106] Creating Layer label_cifar_1_split
I1021 21:37:50.842757 3320 net.cpp:454] label_cifar_1_split <- label
I1021 21:37:50.842761 3320 net.cpp:411] label_cifar_1_split -> label_cifar_1_split_0
I1021 21:37:50.842780 3320 net.cpp:411] label_cifar_1_split -> label_cifar_1_split_1
I1021 21:37:50.842839 3320 net.cpp:150] Setting up label_cifar_1_split
I1021 21:37:50.842844 3320 net.cpp:157] Top shape: 1000 (1000)
I1021 21:37:50.842845 3320 net.cpp:157] Top shape: 1000 (1000)
I1021 21:37:50.842846 3320 net.cpp:165] Memory required for data: 12300000
I1021 21:37:50.842849 3320 layer_factory.hpp:76] Creating layer conv1
I1021 21:37:50.842857 3320 net.cpp:106] Creating Layer conv1
I1021 21:37:50.842859 3320 net.cpp:454] conv1 <- data
I1021 21:37:50.842864 3320 net.cpp:411] conv1 -> conv1
I1021 21:37:50.843067 3320 net.cpp:150] Setting up conv1
I1021 21:37:50.843071 3320 net.cpp:157] Top shape: 1000 32 32 32 (32768000)
I1021 21:37:50.843073 3320 net.cpp:165] Memory required for data: 143372000
I1021 21:37:50.843080 3320 layer_factory.hpp:76] Creating layer pool1
I1021 21:37:50.843085 3320 net.cpp:106] Creating Layer pool1
I1021 21:37:50.843086 3320 net.cpp:454] pool1 <- conv1
I1021 21:37:50.843089 3320 net.cpp:411] pool1 -> pool1
I1021 21:37:50.843111 3320 net.cpp:150] Setting up pool1
I1021 21:37:50.843116 3320 net.cpp:157] Top shape: 1000 32 16 16 (8192000)
I1021 21:37:50.843118 3320 net.cpp:165] Memory required for data: 176140000
I1021 21:37:50.843121 3320 layer_factory.hpp:76] Creating layer bn1
I1021 21:37:50.843127 3320 net.cpp:106] Creating Layer bn1
I1021 21:37:50.843128 3320 net.cpp:454] bn1 <- pool1
I1021 21:37:50.843132 3320 net.cpp:411] bn1 -> bn1
I1021 21:37:50.843283 3320 net.cpp:150] Setting up bn1
I1021 21:37:50.843287 3320 net.cpp:157] Top shape: 1000 32 16 16 (8192000)
I1021 21:37:50.843289 3320 net.cpp:165] Memory required for data: 208908000
I1021 21:37:50.843297 3320 layer_factory.hpp:76] Creating layer Sigmoid1
I1021 21:37:50.843300 3320 net.cpp:106] Creating Layer Sigmoid1
I1021 21:37:50.843302 3320 net.cpp:454] Sigmoid1 <- bn1
I1021 21:37:50.843305 3320 net.cpp:411] Sigmoid1 -> Sigmoid1
I1021 21:37:50.843317 3320 net.cpp:150] Setting up Sigmoid1
I1021 21:37:50.843320 3320 net.cpp:157] Top shape: 1000 32 16 16 (8192000)
I1021 21:37:50.843322 3320 net.cpp:165] Memory required for data: 241676000
I1021 21:37:50.843324 3320 layer_factory.hpp:76] Creating layer conv2
I1021 21:37:50.843329 3320 net.cpp:106] Creating Layer conv2
I1021 21:37:50.843346 3320 net.cpp:454] conv2 <- Sigmoid1
I1021 21:37:50.843350 3320 net.cpp:411] conv2 -> conv2
I1021 21:37:50.845463 3320 net.cpp:150] Setting up conv2
I1021 21:37:50.845470 3320 net.cpp:157] Top shape: 1000 32 16 16 (8192000)
I1021 21:37:50.845473 3320 net.cpp:165] Memory required for data: 274444000
I1021 21:37:50.845476 3320 layer_factory.hpp:76] Creating layer bn2
I1021 21:37:50.845490 3320 net.cpp:106] Creating Layer bn2
I1021 21:37:50.845492 3320 net.cpp:454] bn2 <- conv2
I1021 21:37:50.845495 3320 net.cpp:397] bn2 -> conv2 (in-place)
I1021 21:37:50.845614 3320 net.cpp:150] Setting up bn2
I1021 21:37:50.845619 3320 net.cpp:157] Top shape: 1000 32 16 16 (8192000)
I1021 21:37:50.845621 3320 net.cpp:165] Memory required for data: 307212000
I1021 21:37:50.845638 3320 layer_factory.hpp:76] Creating layer Sigmoid2
I1021 21:37:50.845643 3320 net.cpp:106] Creating Layer Sigmoid2
I1021 21:37:50.845644 3320 net.cpp:454] Sigmoid2 <- conv2
I1021 21:37:50.845646 3320 net.cpp:411] Sigmoid2 -> Sigmoid2
I1021 21:37:50.845659 3320 net.cpp:150] Setting up Sigmoid2
I1021 21:37:50.845664 3320 net.cpp:157] Top shape: 1000 32 16 16 (8192000)
I1021 21:37:50.845665 3320 net.cpp:165] Memory required for data: 339980000
I1021 21:37:50.845667 3320 layer_factory.hpp:76] Creating layer pool2
I1021 21:37:50.845671 3320 net.cpp:106] Creating Layer pool2
I1021 21:37:50.845674 3320 net.cpp:454] pool2 <- Sigmoid2
I1021 21:37:50.845677 3320 net.cpp:411] pool2 -> pool2
I1021 21:37:50.845690 3320 net.cpp:150] Setting up pool2
I1021 21:37:50.845693 3320 net.cpp:157] Top shape: 1000 32 8 8 (2048000)
I1021 21:37:50.845695 3320 net.cpp:165] Memory required for data: 348172000
I1021 21:37:50.845696 3320 layer_factory.hpp:76] Creating layer conv3
I1021 21:37:50.845702 3320 net.cpp:106] Creating Layer conv3
I1021 21:37:50.845705 3320 net.cpp:454] conv3 <- pool2
I1021 21:37:50.845710 3320 net.cpp:411] conv3 -> conv3
I1021 21:37:50.847018 3320 net.cpp:150] Setting up conv3
I1021 21:37:50.847024 3320 net.cpp:157] Top shape: 1000 64 8 8 (4096000)
I1021 21:37:50.847026 3320 net.cpp:165] Memory required for data: 364556000
I1021 21:37:50.847030 3320 layer_factory.hpp:76] Creating layer bn3
I1021 21:37:50.847035 3320 net.cpp:106] Creating Layer bn3
I1021 21:37:50.847038 3320 net.cpp:454] bn3 <- conv3
I1021 21:37:50.847040 3320 net.cpp:397] bn3 -> conv3 (in-place)
I1021 21:37:50.847154 3320 net.cpp:150] Setting up bn3
I1021 21:37:50.847158 3320 net.cpp:157] Top shape: 1000 64 8 8 (4096000)
I1021 21:37:50.847160 3320 net.cpp:165] Memory required for data: 380940000
I1021 21:37:50.847164 3320 layer_factory.hpp:76] Creating layer Sigmoid3
I1021 21:37:50.847168 3320 net.cpp:106] Creating Layer Sigmoid3
I1021 21:37:50.847170 3320 net.cpp:454] Sigmoid3 <- conv3
I1021 21:37:50.847173 3320 net.cpp:411] Sigmoid3 -> Sigmoid3
I1021 21:37:50.847184 3320 net.cpp:150] Setting up Sigmoid3
I1021 21:37:50.847188 3320 net.cpp:157] Top shape: 1000 64 8 8 (4096000)
I1021 21:37:50.847190 3320 net.cpp:165] Memory required for data: 397324000
I1021 21:37:50.847193 3320 layer_factory.hpp:76] Creating layer pool3
I1021 21:37:50.847196 3320 net.cpp:106] Creating Layer pool3
I1021 21:37:50.847198 3320 net.cpp:454] pool3 <- Sigmoid3
I1021 21:37:50.847201 3320 net.cpp:411] pool3 -> pool3
I1021 21:37:50.847213 3320 net.cpp:150] Setting up pool3
I1021 21:37:50.847218 3320 net.cpp:157] Top shape: 1000 64 4 4 (1024000)
I1021 21:37:50.847219 3320 net.cpp:165] Memory required for data: 401420000
I1021 21:37:50.847220 3320 layer_factory.hpp:76] Creating layer ip1
I1021 21:37:50.847225 3320 net.cpp:106] Creating Layer ip1
I1021 21:37:50.847228 3320 net.cpp:454] ip1 <- pool3
I1021 21:37:50.847230 3320 net.cpp:411] ip1 -> ip1
I1021 21:37:50.847544 3320 net.cpp:150] Setting up ip1
I1021 21:37:50.847548 3320 net.cpp:157] Top shape: 1000 10 (10000)
I1021 21:37:50.847550 3320 net.cpp:165] Memory required for data: 401460000
I1021 21:37:50.847565 3320 layer_factory.hpp:76] Creating layer ip1_ip1_0_split
I1021 21:37:50.847582 3320 net.cpp:106] Creating Layer ip1_ip1_0_split
I1021 21:37:50.847585 3320 net.cpp:454] ip1_ip1_0_split <- ip1
I1021 21:37:50.847589 3320 net.cpp:411] ip1_ip1_0_split -> ip1_ip1_0_split_0
I1021 21:37:50.847591 3320 net.cpp:411] ip1_ip1_0_split -> ip1_ip1_0_split_1
I1021 21:37:50.847614 3320 net.cpp:150] Setting up ip1_ip1_0_split
I1021 21:37:50.847617 3320 net.cpp:157] Top shape: 1000 10 (10000)
I1021 21:37:50.847630 3320 net.cpp:157] Top shape: 1000 10 (10000)
I1021 21:37:50.847631 3320 net.cpp:165] Memory required for data: 401540000
I1021 21:37:50.847633 3320 layer_factory.hpp:76] Creating layer accuracy
I1021 21:37:50.847651 3320 net.cpp:106] Creating Layer accuracy
I1021 21:37:50.847653 3320 net.cpp:454] accuracy <- ip1_ip1_0_split_0
I1021 21:37:50.847656 3320 net.cpp:454] accuracy <- label_cifar_1_split_0
I1021 21:37:50.847658 3320 net.cpp:411] accuracy -> accuracy
I1021 21:37:50.847664 3320 net.cpp:150] Setting up accuracy
I1021 21:37:50.847667 3320 net.cpp:157] Top shape: (1)
I1021 21:37:50.847669 3320 net.cpp:165] Memory required for data: 401540004
I1021 21:37:50.847671 3320 layer_factory.hpp:76] Creating layer loss
I1021 21:37:50.847674 3320 net.cpp:106] Creating Layer loss
I1021 21:37:50.847676 3320 net.cpp:454] loss <- ip1_ip1_0_split_1
I1021 21:37:50.847678 3320 net.cpp:454] loss <- label_cifar_1_split_1
I1021 21:37:50.847681 3320 net.cpp:411] loss -> loss
I1021 21:37:50.847686 3320 layer_factory.hpp:76] Creating layer loss
I1021 21:37:50.847743 3320 net.cpp:150] Setting up loss
I1021 21:37:50.847748 3320 net.cpp:157] Top shape: (1)
I1021 21:37:50.847749 3320 net.cpp:160] with loss weight 1
I1021 21:37:50.847759 3320 net.cpp:165] Memory required for data: 401540008
I1021 21:37:50.847760 3320 net.cpp:226] loss needs backward computation.
I1021 21:37:50.847762 3320 net.cpp:228] accuracy does not need backward computation.
I1021 21:37:50.847765 3320 net.cpp:226] ip1_ip1_0_split needs backward computation.
I1021 21:37:50.847766 3320 net.cpp:226] ip1 needs backward computation.
I1021 21:37:50.847769 3320 net.cpp:226] pool3 needs backward computation.
I1021 21:37:50.847770 3320 net.cpp:226] Sigmoid3 needs backward computation.
I1021 21:37:50.847772 3320 net.cpp:226] bn3 needs backward computation.
I1021 21:37:50.847774 3320 net.cpp:226] conv3 needs backward computation.
I1021 21:37:50.847775 3320 net.cpp:226] pool2 needs backward computation.
I1021 21:37:50.847777 3320 net.cpp:226] Sigmoid2 needs backward computation.
I1021 21:37:50.847780 3320 net.cpp:226] bn2 needs backward computation.
I1021 21:37:50.847782 3320 net.cpp:226] conv2 needs backward computation.
I1021 21:37:50.847784 3320 net.cpp:226] Sigmoid1 needs backward computation.
I1021 21:37:50.847785 3320 net.cpp:226] bn1 needs backward computation.
I1021 21:37:50.847787 3320 net.cpp:226] pool1 needs backward computation.
I1021 21:37:50.847790 3320 net.cpp:226] conv1 needs backward computation.
I1021 21:37:50.847791 3320 net.cpp:228] label_cifar_1_split does not need backward computation.
I1021 21:37:50.847795 3320 net.cpp:228] cifar does not need backward computation.
I1021 21:37:50.847795 3320 net.cpp:270] This network produces output accuracy
I1021 21:37:50.847798 3320 net.cpp:270] This network produces output loss
I1021 21:37:50.847807 3320 net.cpp:283] Network initialization done.
I1021 21:37:50.847872 3320 solver.cpp:59] Solver scaffolding done.
I1021 21:37:50.848254 3320 caffe.cpp:212] Starting Optimization
I1021 21:37:50.848260 3320 solver.cpp:287] Solving CIFAR10_full
I1021 21:37:50.848263 3320 solver.cpp:288] Learning Rate Policy: poly
I1021 21:37:50.848827 3320 solver.cpp:340] Iteration 0, Testing net (#0)
I1021 21:37:50.849015 3320 blocking_queue.cpp:50] Data layer prefetch queue empty
I1021 21:37:53.186163 3320 solver.cpp:408] Test net output #0: accuracy = 0.1
I1021 21:37:53.186189 3320 solver.cpp:408] Test net output #1: loss = 87.3365 (* 1 = 87.3365 loss)
I1021 21:37:53.219158 3320 solver.cpp:236] Iteration 0, loss = 2.31878
I1021 21:37:53.219208 3320 solver.cpp:252] Train net output #0: loss = 2.31878 (* 1 = 2.31878 loss)
I1021 21:37:53.219223 3320 sgd_solver.cpp:106] Iteration 0, lr = 0.001
I1021 21:37:58.670799 3320 solver.cpp:236] Iteration 100, loss = 2.27583
I1021 21:37:58.670835 3320 solver.cpp:252] Train net output #0: loss = 2.27583 (* 1 = 2.27583 loss)
I1021 21:37:58.670840 3320 sgd_solver.cpp:106] Iteration 100, lr = 0.00098995
I1021 21:38:04.126946 3320 solver.cpp:236] Iteration 200, loss = 2.26202
I1021 21:38:04.126981 3320 solver.cpp:252] Train net output #0: loss = 2.26202 (* 1 = 2.26202 loss)
I1021 21:38:04.126986 3320 sgd_solver.cpp:106] Iteration 200, lr = 0.000979796
I1021 21:38:09.585199 3320 solver.cpp:236] Iteration 300, loss = 2.26618
I1021 21:38:09.585225 3320 solver.cpp:252] Train net output #0: loss = 2.26618 (* 1 = 2.26618 loss)
I1021 21:38:09.585230 3320 sgd_solver.cpp:106] Iteration 300, lr = 0.000969536
I1021 21:38:15.039438 3320 solver.cpp:236] Iteration 400, loss = 2.26757
I1021 21:38:15.039464 3320 solver.cpp:252] Train net output #0: loss = 2.26757 (* 1 = 2.26757 loss)
I1021 21:38:15.039470 3320 sgd_solver.cpp:106] Iteration 400, lr = 0.000959166
I1021 21:38:20.489140 3320 solver.cpp:236] Iteration 500, loss = 2.29395
I1021 21:38:20.489164 3320 solver.cpp:252] Train net output #0: loss = 2.29395 (* 1 = 2.29395 loss)
I1021 21:38:20.489169 3320 sgd_solver.cpp:106] Iteration 500, lr = 0.000948683
I1021 21:38:25.941782 3320 solver.cpp:236] Iteration 600, loss = 2.2599
I1021 21:38:25.941851 3320 solver.cpp:252] Train net output #0: loss = 2.2599 (* 1 = 2.2599 loss)
I1021 21:38:25.941856 3320 sgd_solver.cpp:106] Iteration 600, lr = 0.000938083
I1021 21:38:31.396996 3320 solver.cpp:236] Iteration 700, loss = 2.26647
I1021 21:38:31.397022 3320 solver.cpp:252] Train net output #0: loss = 2.26647 (* 1 = 2.26647 loss)
I1021 21:38:31.397027 3320 sgd_solver.cpp:106] Iteration 700, lr = 0.000927362
I1021 21:38:36.849063 3320 solver.cpp:236] Iteration 800, loss = 2.26143
I1021 21:38:36.849087 3320 solver.cpp:252] Train net output #0: loss = 2.26143 (* 1 = 2.26143 loss)
I1021 21:38:36.849092 3320 sgd_solver.cpp:106] Iteration 800, lr = 0.000916515
I1021 21:38:42.332900 3320 solver.cpp:236] Iteration 900, loss = 2.37864
I1021 21:38:42.332926 3320 solver.cpp:252] Train net output #0: loss = 2.37864 (* 1 = 2.37864 loss)
I1021 21:38:42.332931 3320 sgd_solver.cpp:106] Iteration 900, lr = 0.000905539
I1021 21:38:47.754860 3320 solver.cpp:340] Iteration 1000, Testing net (#0)
I1021 21:38:50.067314 3320 solver.cpp:408] Test net output #0: accuracy = 0.0915
I1021 21:38:50.067338 3320 solver.cpp:408] Test net output #1: loss = 2.33731 (* 1 = 2.33731 loss)
I1021 21:38:50.099077 3320 solver.cpp:236] Iteration 1000, loss = 2.35446
I1021 21:38:50.099093 3320 solver.cpp:252] Train net output #0: loss = 2.35446 (* 1 = 2.35446 loss)
I1021 21:38:50.099099 3320 sgd_solver.cpp:106] Iteration 1000, lr = 0.000894427
I1021 21:38:55.554541 3320 solver.cpp:236] Iteration 1100, loss = 2.2909
I1021 21:38:55.554566 3320 solver.cpp:252] Train net output #0: loss = 2.2909 (* 1 = 2.2909 loss)
I1021 21:38:55.554571 3320 sgd_solver.cpp:106] Iteration 1100, lr = 0.000883176
I1021 21:39:01.009380 3320 solver.cpp:236] Iteration 1200, loss = 2.26277
I1021 21:39:01.009454 3320 solver.cpp:252] Train net output #0: loss = 2.26277 (* 1 = 2.26277 loss)
I1021 21:39:01.009460 3320 sgd_solver.cpp:106] Iteration 1200, lr = 0.00087178
I1021 21:39:06.462496 3320 solver.cpp:236] Iteration 1300, loss = 2.20165
I1021 21:39:06.462529 3320 solver.cpp:252] Train net output #0: loss = 2.20165 (* 1 = 2.20165 loss)
I1021 21:39:06.462534 3320 sgd_solver.cpp:106] Iteration 1300, lr = 0.000860233
I1021 21:39:11.915897 3320 solver.cpp:236] Iteration 1400, loss = 2.1902
I1021 21:39:11.915930 3320 solver.cpp:252] Train net output #0: loss = 2.1902 (* 1 = 2.1902 loss)
I1021 21:39:11.915935 3320 sgd_solver.cpp:106] Iteration 1400, lr = 0.000848528
I1021 21:39:17.370481 3320 solver.cpp:236] Iteration 1500, loss = 2.27365
I1021 21:39:17.370507 3320 solver.cpp:252] Train net output #0: loss = 2.27365 (* 1 = 2.27365 loss)
I1021 21:39:17.370512 3320 sgd_solver.cpp:106] Iteration 1500, lr = 0.00083666
I1021 21:39:22.822818 3320 solver.cpp:236] Iteration 1600, loss = 2.24745
I1021 21:39:22.822851 3320 solver.cpp:252] Train net output #0: loss = 2.24745 (* 1 = 2.24745 loss)
I1021 21:39:22.822856 3320 sgd_solver.cpp:106] Iteration 1600, lr = 0.000824621
I1021 21:39:28.276706 3320 solver.cpp:236] Iteration 1700, loss = 2.26644
I1021 21:39:28.276731 3320 solver.cpp:252] Train net output #0: loss = 2.26644 (* 1 = 2.26644 loss)
I1021 21:39:28.276736 3320 sgd_solver.cpp:106] Iteration 1700, lr = 0.000812404
I1021 21:39:35.975937 3320 solver.cpp:236] Iteration 1800, loss = 2.32557
I1021 21:39:35.976040 3320 solver.cpp:252] Train net output #0: loss = 2.32557 (* 1 = 2.32557 loss)
I1021 21:39:35.976057 3320 sgd_solver.cpp:106] Iteration 1800, lr = 0.0008
I1021 21:39:47.464804 3320 solver.cpp:236] Iteration 1900, loss = 2.36034
I1021 21:39:47.464840 3320 solver.cpp:252] Train net output #0: loss = 2.36034 (* 1 = 2.36034 loss)
I1021 21:39:47.464846 3320 sgd_solver.cpp:106] Iteration 1900, lr = 0.000787401
I1021 21:39:58.865144 3320 solver.cpp:340] Iteration 2000, Testing net (#0)
I1021 21:40:03.309270 3320 solver.cpp:408] Test net output #0: accuracy = 0.1
I1021 21:40:03.309304 3320 solver.cpp:408] Test net output #1: loss = 2.31379 (* 1 = 2.31379 loss)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment