Forked from vadimkantorov/compact_bilinear_pooling.py
Created
February 1, 2019 11:41
-
-
Save ducha-aiki/a14fc83f30d3f01817c690a74de18f47 to your computer and use it in GitHub Desktop.
Compact Bilinear Pooling in PyTorch using the new FFT support
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
class CompactBilinearPooling(torch.nn.Module): | |
def __init__(self, input_dim1, input_dim2, output_dim, sum_pool = True): | |
super(CompactBilinearPooling, self).__init__() | |
self.output_dim = output_dim | |
self.sum_pool = sum_pool | |
generate_sketch_matrix = lambda rand_h, rand_s, input_dim, output_dim: torch.sparse.FloatTensor(torch.stack([torch.arange(input_dim, out = torch.LongTensor()), rand_h.long()]), rand_s.float(), [input_dim, output_dim]).to_dense() | |
self.sketch_matrix1 = torch.nn.Parameter(generate_sketch_matrix(torch.randint(output_dim, size = (input_dim1,)), 2 * torch.randint(2, size = (input_dim1,)) - 1, input_dim1, output_dim)) | |
self.sketch_matrix2 = torch.nn.Parameter(generate_sketch_matrix(torch.randint(output_dim, size = (input_dim2,)), 2 * torch.randint(2, size = (input_dim2,)) - 1, input_dim2, output_dim)) | |
def forward(self, x1, x2): | |
fft1 = torch.rfft(x1.permute(0, 2, 3, 1).matmul(self.sketch_matrix1), 1) | |
fft2 = torch.rfft(x2.permute(0, 2, 3, 1).matmul(self.sketch_matrix2), 1) | |
fft_product = torch.stack([fft1[..., 0] * fft2[..., 0] - fft1[..., 1] * fft2[..., 1], fft1[..., 0] * fft2[..., 1] + fft1[..., 1] * fft2[..., 0]], dim = -1) | |
cbp = torch.irfft(fft_product, 1, signal_sizes = (self.output_dim,)) * self.output_dim | |
return cbp.sum(dim = 1).sum(dim = 1) if self.sum_pool else cbp.permute(0, 3, 1, 2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment