Created
November 6, 2017 07:37
-
-
Save dudu159632/d330c770eff5dc82e0c617e9d0f5620d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "ZF" | |
input: "data" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
dim: 224 | |
dim: 224 | |
} | |
input: "im_info" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
} | |
# ------------------------ layer 1 ----------------------------- | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
convolution_param { | |
num_output: 96 | |
kernel_size: 7 | |
pad: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "norm1" | |
type: "LRN" | |
bottom: "conv1" | |
top: "norm1" | |
lrn_param { | |
local_size: 3 | |
alpha: 0.00005 | |
beta: 0.75 | |
norm_region: WITHIN_CHANNEL | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "norm1" | |
top: "pool1" | |
pooling_param { | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
pool: MAX | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 5 | |
pad: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "norm2" | |
type: "LRN" | |
bottom: "conv2" | |
top: "norm2" | |
lrn_param { | |
local_size: 3 | |
alpha: 0.00005 | |
beta: 0.75 | |
norm_region: WITHIN_CHANNEL | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "norm2" | |
top: "pool2" | |
pooling_param { | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
pool: MAX | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
convolution_param { | |
num_output: 384 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv4" | |
convolution_param { | |
num_output: 384 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
#-----------------------layer +------------------------- | |
layer { | |
name: "rpn_conv1" | |
type: "Convolution" | |
bottom: "conv5" | |
top: "rpn_conv1" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 pad: 1 stride: 1 | |
} | |
} | |
layer { | |
name: "rpn_relu1" | |
type: "ReLU" | |
bottom: "rpn_conv1" | |
top: "rpn_conv1" | |
} | |
layer { | |
name: "rpn_cls_score" | |
type: "Convolution" | |
bottom: "rpn_conv1" | |
top: "rpn_cls_score" | |
convolution_param { | |
num_output: 18 # 2(bg/fg) * 9(anchors) | |
kernel_size: 1 pad: 0 stride: 1 | |
} | |
} | |
layer { | |
name: "rpn_bbox_pred" | |
type: "Convolution" | |
bottom: "rpn_conv1" | |
top: "rpn_bbox_pred" | |
convolution_param { | |
num_output: 36 # 4 * 9(anchors) | |
kernel_size: 1 pad: 0 stride: 1 | |
} | |
} | |
layer { | |
bottom: "rpn_cls_score" | |
top: "rpn_cls_score_reshape" | |
name: "rpn_cls_score_reshape" | |
type: "Reshape" | |
reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } } | |
} | |
#-----------------------output------------------------ | |
layer { | |
name: "rpn_cls_prob" | |
type: "Softmax" | |
bottom: "rpn_cls_score_reshape" | |
top: "rpn_cls_prob" | |
} | |
layer { | |
name: 'rpn_cls_prob_reshape' | |
type: 'Reshape' | |
bottom: 'rpn_cls_prob' | |
top: 'rpn_cls_prob_reshape' | |
reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } } | |
} | |
layer { | |
name: 'proposal' | |
type: 'Python' | |
bottom: 'rpn_cls_prob_reshape' | |
bottom: 'rpn_bbox_pred' | |
bottom: 'im_info' | |
top: 'rois' | |
top: 'scores' | |
python_param { | |
module: 'rpn.proposal_layer' | |
layer: 'ProposalLayer' | |
param_str: "'feat_stride': 16" | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment