Last active
May 14, 2019 15:06
-
-
Save dukn/35b33391f08400d4a6f08bec5bd05197 to your computer and use it in GitHub Desktop.
Just 4 fun =)))
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from sklearn.datasets.samples_generator import make_blobs | |
from sklearn.preprocessing import MinMaxScaler | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score | |
from sklearn.metrics import mean_squared_error | |
data = np.asarray([[random.random(), random.random()] for i in range(1000)]) | |
lable = np.asarray([np.argmax(e) for e in data] ) | |
X_train, X_test, y_train, y_test = train_test_split(data, lable, test_size=0.1, random_state=69) | |
model = Sequential() | |
model.add(Dense(4, input_dim=2, activation='relu')) | |
model.add(Dense(4, activation='relu')) | |
model.add(Dense(1, activation='sigmoid')) | |
model.compile(loss='binary_crossentropy', optimizer='adam') | |
model.fit(X_train, y_train, epochs=200, verbose=0) | |
ypred = model.predict(X_test) | |
mse = mean_squared_error(y_test, ypred) | |
print ("MSE =",mse) | |
print() | |
print ("Sample first 5 elements") | |
print ("Data") | |
print (X_test[:5]) | |
print ("Lable") | |
print (np.around(y_test,0)[:5]) | |
print ("Predict") | |
print(np.around(ypred,0).reshape((-1))[:5]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment