Skip to content

Instantly share code, notes, and snippets.

@durka
Created June 4, 2018 18:32
Show Gist options
  • Save durka/ba86747febe89031e83a82107e8e47b1 to your computer and use it in GitHub Desktop.
Save durka/ba86747febe89031e83a82107e8e47b1 to your computer and use it in GitHub Desktop.
\DeclareRobustCommand{\tblcap}[2]{%
\caption[\ifthenelse{\equal{#2}{cv}}{Cross-validation}{Final} learning results (without feature selection)]{Results of regression and classification \ifthenelse{\equal{#1}{fs}}{after}{without} feature selection, \ifthenelse{\equal{#2}{cv}}{in cross validation}{on the entire training set and held-out test set}, with summary statistics. \ifthenelse{\equal{#2}{cv}}{All metrics shown are averaged over cross-validation splits. }For the regression tasks, we calculate the correlation between desired and actual output, slope of the trend-line, $p$-value, $R^2$, and \ac{RMSE}, while classification accuracy, $p$-value with respect to a dummy classifier, precision, recall, and \ac{MAE} are shown for the the classification tasks. Bolded rows show the best-performing models. This table corresponds to \cref{fig:properties_#1_#2train,fig:properties_#1_#2test,fig:ratings_#1_#2train,fig:ratings_#1_#2test}.}%
}
\begin{table}[p]
\centering
\begin{tabular}{r|>{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c | >{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c <{\clearrow}}
\multicolumn{1}{l}{\textbf{NOFS-CV}} \\
\multicolumn{1}{l}{} \\
\multirow{2}{*}{Property} & \multicolumn{5}{c|}{CV Training set performance} & \multicolumn{5}{c}{CV Test set performance} \\
& $\rho$ & $m$ & $p$ & $R^2$ & RMSE & $\rho$ & $m$ & $p$ & $R^2$ & RMSE \\ \hline
%\setrow{\bfseries\boldmath}
Frequency bin 1 & 0.97 & 0.87 & $<10^{-100}$ & 0.94 & 0.24 & 0.27 & 0.091 & $1.1*10^{-6}$ & 0.049 & 0.95 \\
Frequency bin 10 & 0.91 & 0.59 & $<10^{-100}$ & 0.75 & 0.5 & 0.16 & 0.035 & 0.091 & -0.036 & 0.97 \\
\setrow{\bfseries\boldmath} Friction coefficient & 0.99 & 0.95 & $<10^{-100}$ & 0.98 & 0.14 & 0.31 & 0.13 & $9.1*10^{-12}$ & 0.058 & 0.96 \\
Hardness & 0.99 & 0.93 & $<10^{-100}$ & 0.97 & 0.17 & 0.28 & 0.11 & 0.0002 & 0.068 & 0.96 \\
Spectral centroid & 0.99 & 0.92 & $<10^{-100}$ & 0.97 & 0.17 & 0.18 & 0.051 & 0.011 & -0.024 & 1 \\
\setrow{\bfseries\boldmath} MF cepstral coeff. 1 & 0.98 & 0.77 & $<10^{-100}$ & 0.92 & 0.28 & 0.32 & 0.12 & $4.9*10^{-19}$ & 0.026 & 0.97 \\
MF cepstral coeff. 4 & 0.99 & 0.93 & $<10^{-100}$ & 0.97 & 0.17 & 0.29 & 0.12 & $2.5*10^{-10}$ & 0.067 & 0.97 \\
MF cepstral coeff. 7 & 0.97 & 0.75 & $<10^{-100}$ & 0.9 & 0.31 & 0.24 & 0.084 & $1.7*10^{-8}$ & 0.019 & 0.99 \\
MF cepstral coeff. 10 & 0.97 & 0.69 & $<10^{-100}$ & 0.87 & 0.35 & 0.23 & 0.047 & 0.00013 & 0.048 & 0.97 \\
MF cepstral coeff. 13 & 0.99 & 0.93 & $<10^{-100}$ & 0.97 & 0.17 & 0.25 & 0.1 & $1.1*10^{-11}$ & -0.0045 & 0.99 \\
Spikiness & 0.99 & 0.92 & $<10^{-100}$ & 0.97 & 0.18 & 0.22 & 0.073 & $3*10^{-6}$ & 0.025 & 0.98 \\
Temporal roughness & 0.99 & 0.94 & $<10^{-100}$ & 0.98 & 0.14 & 0.18 & 0.062 & 0.011 & -0.037 & 0.99 \\
\setrow{\bfseries\boldmath} Waviness & 0.99 & 0.94 & $<10^{-100}$ & 0.97 & 0.16 & 0.36 & 0.14 & $3.8*10^{-13}$ & 0.12 & 0.93 \\
Regularity & 0.96 & 0.72 & $<10^{-100}$ & 0.88 & 0.35 & 0.12 & 0.026 & 0.18 & -0.043 & 1 \\
Fineness & 0.99 & 0.94 & $<10^{-100}$ & 0.98 & 0.14 & 0.28 & 0.1 & $4.1*10^{-5}$ & 0.055 & 0.97 \\
Friction & 0.99 & 0.92 & $<10^{-100}$ & 0.97 & 0.18 & 0.2 & 0.066 & 0.003 & -0.05 & 1 \\
Friction (normalized) & 0.98 & 0.87 & $<10^{-100}$ & 0.95 & 0.23 & 0.1 & 0.034 & 0.11 & -0.06 & 1 \\
\hline \multicolumn{10}{c}{} \\
\multirow{2}{*}{Rating} & \multicolumn{5}{c|}{Training set performance} & \multicolumn{5}{c}{Test set performance} \\
& \% & $p$ & $P$ & $R$ & MAE & \% & $p$ & $P$ & $R$ & MAE \\ \hline
Hardness & 100 & $<10^{-100}$ & 1 & 1 & 0 & 67 & 1 & 0.2 & 0.58 & 0.71 \\
\setrow{\bfseries\boldmath} Roughness & 100 & $<10^{-100}$ & 0.99 & 1 & 0.0025 & 49 & 0.07 & 0.33 & 0.43 & 0.61 \\
Warmness & 100 & $<10^{-100}$ & 1 & 1 & 0 & 77 & 1 & 0.25 & 0.77 & 0.26 \\
Stickiness (tooling ball) & 100 & $<10^{-100}$ & 1 & 1 & 0 & 63 & 1 & 0.25 & 0.55 & 0.48 \\
Stickiness (OptoForce) & 100 & $<10^{-100}$ & 1 & 1 & 0 & 37 & 0.18 & 0.25 & 0.34 & 0.81 \\
Stickiness (BioTac) & 100 & $<10^{-100}$ & 1 & 1 & 0.0031 & 37 & 0.31 & 0.32 & 0.31 & 0.86 \\
\end{tabular}
\tblcap{nofs}{cv}
\label{tbl:results_nofs_cv}
\end{table}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment