Created
June 4, 2018 18:32
-
-
Save durka/ba86747febe89031e83a82107e8e47b1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\DeclareRobustCommand{\tblcap}[2]{% | |
\caption[\ifthenelse{\equal{#2}{cv}}{Cross-validation}{Final} learning results (without feature selection)]{Results of regression and classification \ifthenelse{\equal{#1}{fs}}{after}{without} feature selection, \ifthenelse{\equal{#2}{cv}}{in cross validation}{on the entire training set and held-out test set}, with summary statistics. \ifthenelse{\equal{#2}{cv}}{All metrics shown are averaged over cross-validation splits. }For the regression tasks, we calculate the correlation between desired and actual output, slope of the trend-line, $p$-value, $R^2$, and \ac{RMSE}, while classification accuracy, $p$-value with respect to a dummy classifier, precision, recall, and \ac{MAE} are shown for the the classification tasks. Bolded rows show the best-performing models. This table corresponds to \cref{fig:properties_#1_#2train,fig:properties_#1_#2test,fig:ratings_#1_#2train,fig:ratings_#1_#2test}.}% | |
} | |
\begin{table}[p] | |
\centering | |
\begin{tabular}{r|>{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c | >{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c >{\rowmac}c <{\clearrow}} | |
\multicolumn{1}{l}{\textbf{NOFS-CV}} \\ | |
\multicolumn{1}{l}{} \\ | |
\multirow{2}{*}{Property} & \multicolumn{5}{c|}{CV Training set performance} & \multicolumn{5}{c}{CV Test set performance} \\ | |
& $\rho$ & $m$ & $p$ & $R^2$ & RMSE & $\rho$ & $m$ & $p$ & $R^2$ & RMSE \\ \hline | |
%\setrow{\bfseries\boldmath} | |
Frequency bin 1 & 0.97 & 0.87 & $<10^{-100}$ & 0.94 & 0.24 & 0.27 & 0.091 & $1.1*10^{-6}$ & 0.049 & 0.95 \\ | |
Frequency bin 10 & 0.91 & 0.59 & $<10^{-100}$ & 0.75 & 0.5 & 0.16 & 0.035 & 0.091 & -0.036 & 0.97 \\ | |
\setrow{\bfseries\boldmath} Friction coefficient & 0.99 & 0.95 & $<10^{-100}$ & 0.98 & 0.14 & 0.31 & 0.13 & $9.1*10^{-12}$ & 0.058 & 0.96 \\ | |
Hardness & 0.99 & 0.93 & $<10^{-100}$ & 0.97 & 0.17 & 0.28 & 0.11 & 0.0002 & 0.068 & 0.96 \\ | |
Spectral centroid & 0.99 & 0.92 & $<10^{-100}$ & 0.97 & 0.17 & 0.18 & 0.051 & 0.011 & -0.024 & 1 \\ | |
\setrow{\bfseries\boldmath} MF cepstral coeff. 1 & 0.98 & 0.77 & $<10^{-100}$ & 0.92 & 0.28 & 0.32 & 0.12 & $4.9*10^{-19}$ & 0.026 & 0.97 \\ | |
MF cepstral coeff. 4 & 0.99 & 0.93 & $<10^{-100}$ & 0.97 & 0.17 & 0.29 & 0.12 & $2.5*10^{-10}$ & 0.067 & 0.97 \\ | |
MF cepstral coeff. 7 & 0.97 & 0.75 & $<10^{-100}$ & 0.9 & 0.31 & 0.24 & 0.084 & $1.7*10^{-8}$ & 0.019 & 0.99 \\ | |
MF cepstral coeff. 10 & 0.97 & 0.69 & $<10^{-100}$ & 0.87 & 0.35 & 0.23 & 0.047 & 0.00013 & 0.048 & 0.97 \\ | |
MF cepstral coeff. 13 & 0.99 & 0.93 & $<10^{-100}$ & 0.97 & 0.17 & 0.25 & 0.1 & $1.1*10^{-11}$ & -0.0045 & 0.99 \\ | |
Spikiness & 0.99 & 0.92 & $<10^{-100}$ & 0.97 & 0.18 & 0.22 & 0.073 & $3*10^{-6}$ & 0.025 & 0.98 \\ | |
Temporal roughness & 0.99 & 0.94 & $<10^{-100}$ & 0.98 & 0.14 & 0.18 & 0.062 & 0.011 & -0.037 & 0.99 \\ | |
\setrow{\bfseries\boldmath} Waviness & 0.99 & 0.94 & $<10^{-100}$ & 0.97 & 0.16 & 0.36 & 0.14 & $3.8*10^{-13}$ & 0.12 & 0.93 \\ | |
Regularity & 0.96 & 0.72 & $<10^{-100}$ & 0.88 & 0.35 & 0.12 & 0.026 & 0.18 & -0.043 & 1 \\ | |
Fineness & 0.99 & 0.94 & $<10^{-100}$ & 0.98 & 0.14 & 0.28 & 0.1 & $4.1*10^{-5}$ & 0.055 & 0.97 \\ | |
Friction & 0.99 & 0.92 & $<10^{-100}$ & 0.97 & 0.18 & 0.2 & 0.066 & 0.003 & -0.05 & 1 \\ | |
Friction (normalized) & 0.98 & 0.87 & $<10^{-100}$ & 0.95 & 0.23 & 0.1 & 0.034 & 0.11 & -0.06 & 1 \\ | |
\hline \multicolumn{10}{c}{} \\ | |
\multirow{2}{*}{Rating} & \multicolumn{5}{c|}{Training set performance} & \multicolumn{5}{c}{Test set performance} \\ | |
& \% & $p$ & $P$ & $R$ & MAE & \% & $p$ & $P$ & $R$ & MAE \\ \hline | |
Hardness & 100 & $<10^{-100}$ & 1 & 1 & 0 & 67 & 1 & 0.2 & 0.58 & 0.71 \\ | |
\setrow{\bfseries\boldmath} Roughness & 100 & $<10^{-100}$ & 0.99 & 1 & 0.0025 & 49 & 0.07 & 0.33 & 0.43 & 0.61 \\ | |
Warmness & 100 & $<10^{-100}$ & 1 & 1 & 0 & 77 & 1 & 0.25 & 0.77 & 0.26 \\ | |
Stickiness (tooling ball) & 100 & $<10^{-100}$ & 1 & 1 & 0 & 63 & 1 & 0.25 & 0.55 & 0.48 \\ | |
Stickiness (OptoForce) & 100 & $<10^{-100}$ & 1 & 1 & 0 & 37 & 0.18 & 0.25 & 0.34 & 0.81 \\ | |
Stickiness (BioTac) & 100 & $<10^{-100}$ & 1 & 1 & 0.0031 & 37 & 0.31 & 0.32 & 0.31 & 0.86 \\ | |
\end{tabular} | |
\tblcap{nofs}{cv} | |
\label{tbl:results_nofs_cv} | |
\end{table} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment