-
-
Save dvanatta/4166092 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| make an empty list called medoids | |
| for cluster i: | |
| let t be a trajectory containing all of the structures assigned to cluster i | |
| let D = the full len(t) x len(t) pairwise RMSD distance matrix | |
| set medoid[i] = argmin( rowsums (D) ) | |
| Actual Code: | |
| #!/home/dvanatta/epd-7.3-1-rh5-x86_64/bin/python | |
| # This file is part of MSMBuilder. | |
| # | |
| # Copyright 2011 Stanford University | |
| # | |
| # MSMBuilder is free software; you can redistribute it and/or modify | |
| # it under the terms of the GNU General Public License as published by | |
| # the Free Software Foundation; either version 2 of the License, or | |
| # (at your option) any later version. | |
| # | |
| # This program is distributed in the hope that it will be useful, | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| # GNU General Public License for more details. | |
| # | |
| # You should have received a copy of the GNU General Public License | |
| # along with this program; if not, write to the Free Software | |
| # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
| import numpy as np | |
| from msmbuilder import Trajectory, Project, Serializer | |
| from msmbuilder.metrics import RMSD | |
| from msmbuilder import arglib | |
| import copy | |
| def run(project, pdb, atom_indices, assignments): | |
| Gens = Trajectory.LoadTrajectoryFile('Fake_Gens.lh5') | |
| num_states = np.max(assignments['Data']) + 1 | |
| print "numstates=", num_states | |
| for i in range(num_states): | |
| # state_traj=Trajectory.LoadFromPDB('active.pdb') | |
| state = np.where(assignments['Data']==i) | |
| state = np.array(state).T | |
| state_traj = Project.GetConformations(project,state) | |
| #for j in range(len(state[0])): | |
| #project = Project.LoadFromHDF(options.projectfn) | |
| # print "state=", state | |
| # traj_fn = "Trajectories/trj"+str(state[0][j])+".lh5" | |
| # traj = Trajectory.LoadTrajectoryFile(traj_fn) | |
| # if j==0: | |
| # state_traj['XYZList']= traj['XYZList'][state[1][j]] | |
| # if j>0: | |
| # state_traj['XYZList']= np.vstack((state_traj['XYZList'],traj['XYZList'][state[1][j]])) | |
| # print "len state_traj=", len(state_traj) | |
| # you could replace this with your own metric if you like | |
| metric = RMSD(atom_indices) | |
| D=np.ones((len(state),1)) | |
| for j in range(len(state)): | |
| ppdb = metric.prepare_trajectory(state_traj[j]) | |
| ptraj = metric.prepare_trajectory(state_traj) | |
| distances = metric.one_to_all(ppdb, ptraj, 0) | |
| D[j]=distances.sum() | |
| np.savetxt("D", D) | |
| centroid = state_traj['XYZList'][np.where(D==D.min())[0][0]] | |
| Gens['XYZList'][i] = centroid | |
| # return distances | |
| Gens['XYZList'] = Gens['XYZList'][0:num_states] | |
| Trajectory.SaveToLHDF(Gens, 'HGens.lh5') | |
| if __name__ == '__main__': | |
| parser = arglib.ArgumentParser("""Given an assignments file, calculates and writes what the generators would have been for that Data. Since I'm a numpy noob and can't append, requires dummy generator file named "Fake_Gens.lh5" which has at least as many clusters as input data. Also requires pdb and atomindices. output is called "HGens.lh5 | |
| """) | |
| parser.add_argument('pdb', type=arglib.TrajectoryType) | |
| # parser.add_argument('input', description='Path to a trajectory-like file') | |
| parser.add_argument('assignments') | |
| parser.add_argument('project') | |
| parser.add_argument('atom_indices', description='Indices of atoms to compare', | |
| type=arglib.LoadTxtType(dtype=int), default='AtomIndices.dat') | |
| parser.add_argument('output', description='Flat text file for the output', | |
| default='RMSD.dat') | |
| args = parser.parse_args() | |
| arglib.die_if_path_exists(args.output) | |
| distances = run(args.project, args.pdb, args.atom_indices, args.assignments) | |
| print 'Saving Output: %s' % args.output | |
| # np.savetxt(args.output, distances) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment