Last active
May 8, 2024 16:02
-
-
Save dvgodoy/0db802cfb8edd488dfbd524302ca4be7 to your computer and use it in GitHub Desktop.
Draw neural network diagram with Matplotlib
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Gist originally developed by @craffel and improved by @ljhuang2017 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def draw_neural_net(ax, left, right, bottom, top, layer_sizes, coefs_, intercepts_, n_iter_, loss_): | |
''' | |
Draw a neural network cartoon using matplotilb. | |
:usage: | |
>>> fig = plt.figure(figsize=(12, 12)) | |
>>> draw_neural_net(fig.gca(), .1, .9, .1, .9, [4, 7, 2]) | |
:parameters: | |
- ax : matplotlib.axes.AxesSubplot | |
The axes on which to plot the cartoon (get e.g. by plt.gca()) | |
- left : float | |
The center of the leftmost node(s) will be placed here | |
- right : float | |
The center of the rightmost node(s) will be placed here | |
- bottom : float | |
The center of the bottommost node(s) will be placed here | |
- top : float | |
The center of the topmost node(s) will be placed here | |
- layer_sizes : list of int | |
List of layer sizes, including input and output dimensionality | |
''' | |
n_layers = len(layer_sizes) | |
v_spacing = (top - bottom)/float(max(layer_sizes)) | |
h_spacing = (right - left)/float(len(layer_sizes) - 1) | |
# Input-Arrows | |
layer_top_0 = v_spacing*(layer_sizes[0] - 1)/2. + (top + bottom)/2. | |
for m in xrange(layer_sizes[0]): | |
plt.arrow(left-0.18, layer_top_0 - m*v_spacing, 0.12, 0, lw =1, head_width=0.01, head_length=0.02) | |
# Nodes | |
for n, layer_size in enumerate(layer_sizes): | |
layer_top = v_spacing*(layer_size - 1)/2. + (top + bottom)/2. | |
for m in xrange(layer_size): | |
circle = plt.Circle((n*h_spacing + left, layer_top - m*v_spacing), v_spacing/8., | |
color='w', ec='k', zorder=4) | |
if n == 0: | |
plt.text(left-0.125, layer_top - m*v_spacing, r'$X_{'+str(m+1)+'}$', fontsize=15) | |
elif (n_layers == 3) & (n == 1): | |
plt.text(n*h_spacing + left+0.00, layer_top - m*v_spacing+ (v_spacing/8.+0.01*v_spacing), r'$H_{'+str(m+1)+'}$', fontsize=15) | |
elif n == n_layers -1: | |
plt.text(n*h_spacing + left+0.10, layer_top - m*v_spacing, r'$y_{'+str(m+1)+'}$', fontsize=15) | |
ax.add_artist(circle) | |
# Bias-Nodes | |
for n, layer_size in enumerate(layer_sizes): | |
if n < n_layers -1: | |
x_bias = (n+0.5)*h_spacing + left | |
y_bias = top + 0.005 | |
circle = plt.Circle((x_bias, y_bias), v_spacing/8., color='w', ec='k', zorder=4) | |
plt.text(x_bias-(v_spacing/8.+0.10*v_spacing+0.01), y_bias, r'$1$', fontsize=15) | |
ax.add_artist(circle) | |
# Edges | |
# Edges between nodes | |
for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): | |
layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2. | |
layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2. | |
for m in xrange(layer_size_a): | |
for o in xrange(layer_size_b): | |
line = plt.Line2D([n*h_spacing + left, (n + 1)*h_spacing + left], | |
[layer_top_a - m*v_spacing, layer_top_b - o*v_spacing], c='k') | |
ax.add_artist(line) | |
xm = (n*h_spacing + left) | |
xo = ((n + 1)*h_spacing + left) | |
ym = (layer_top_a - m*v_spacing) | |
yo = (layer_top_b - o*v_spacing) | |
rot_mo_rad = np.arctan((yo-ym)/(xo-xm)) | |
rot_mo_deg = rot_mo_rad*180./np.pi | |
xm1 = xm + (v_spacing/8.+0.05)*np.cos(rot_mo_rad) | |
if n == 0: | |
if yo > ym: | |
ym1 = ym + (v_spacing/8.+0.12)*np.sin(rot_mo_rad) | |
else: | |
ym1 = ym + (v_spacing/8.+0.05)*np.sin(rot_mo_rad) | |
else: | |
if yo > ym: | |
ym1 = ym + (v_spacing/8.+0.12)*np.sin(rot_mo_rad) | |
else: | |
ym1 = ym + (v_spacing/8.+0.04)*np.sin(rot_mo_rad) | |
plt.text( xm1, ym1,\ | |
str(round(coefs_[n][m, o],4)),\ | |
rotation = rot_mo_deg, \ | |
fontsize = 10) | |
# Edges between bias and nodes | |
for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): | |
if n < n_layers-1: | |
layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2. | |
layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2. | |
x_bias = (n+0.5)*h_spacing + left | |
y_bias = top + 0.005 | |
for o in xrange(layer_size_b): | |
line = plt.Line2D([x_bias, (n + 1)*h_spacing + left], | |
[y_bias, layer_top_b - o*v_spacing], c='k') | |
ax.add_artist(line) | |
xo = ((n + 1)*h_spacing + left) | |
yo = (layer_top_b - o*v_spacing) | |
rot_bo_rad = np.arctan((yo-y_bias)/(xo-x_bias)) | |
rot_bo_deg = rot_bo_rad*180./np.pi | |
xo2 = xo - (v_spacing/8.+0.01)*np.cos(rot_bo_rad) | |
yo2 = yo - (v_spacing/8.+0.01)*np.sin(rot_bo_rad) | |
xo1 = xo2 -0.05 *np.cos(rot_bo_rad) | |
yo1 = yo2 -0.05 *np.sin(rot_bo_rad) | |
plt.text( xo1, yo1,\ | |
str(round(intercepts_[n][o],4)),\ | |
rotation = rot_bo_deg, \ | |
fontsize = 10) | |
# Output-Arrows | |
layer_top_0 = v_spacing*(layer_sizes[-1] - 1)/2. + (top + bottom)/2. | |
for m in xrange(layer_sizes[-1]): | |
plt.arrow(right+0.015, layer_top_0 - m*v_spacing, 0.16*h_spacing, 0, lw =1, head_width=0.01, head_length=0.02) | |
# Record the n_iter_ and loss | |
plt.text(left + (right-left)/3., bottom - 0.005*v_spacing, \ | |
'Steps:'+str(n_iter_)+' Loss: ' + str(round(loss_, 6)), fontsize = 15) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.neural_network import MLPClassifier as MLP | |
from draw_neural_net import draw_neural_net | |
#--------[1] Input data | |
dataset = np.mat('-1 -1 -1; -1 1 1; 1 -1 1; 1 1 -1') | |
X_train = dataset | |
y_train = np.mat('0; 1; 1; 0') | |
#-----2-2-1 | |
my_hidden_layer_sizes= (2,) | |
#------2-2-8-1 | |
#my_hidden_layer_sizes= (2, 8,) | |
#------2-16-16-1 | |
#my_hidden_layer_sizes= (16, 16,) | |
XOR_MLP = MLP( | |
activation='tanh', | |
alpha=0., | |
batch_size='auto', | |
beta_1=0.9, | |
beta_2=0.999, | |
early_stopping=False, | |
epsilon=1e-08, | |
hidden_layer_sizes= my_hidden_layer_sizes, | |
learning_rate='constant', | |
learning_rate_init = 0.1, | |
max_iter=5000, | |
momentum=0.5, | |
nesterovs_momentum=True, | |
power_t=0.5, | |
random_state=0, | |
shuffle=True, | |
solver='sgd', | |
tol=0.0001, | |
validation_fraction=0.1, | |
verbose=False, | |
warm_start=False) | |
XOR_MLP.fit(X_train,y_train) | |
fig = plt.figure(figsize=(12, 12)) | |
ax = fig.gca() | |
ax.axis('off') | |
layer_sizes = [2] + list(my_hidden_layer_sizes) + [1] | |
draw_neural_net(ax, .1, .9, .1, .9, layer_sizes, XOR_MLP.coefs_, XOR_MLP.intercepts_, XOR_MLP.n_iter_, XOR_MLP.loss_) | |
fig.savefig('nn_digaram.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi Daniel,
when I run this code I got this below error message, please correct me where I missed.
ValueError: Multioutput target data is not supported with label binarization