Skip to content

Instantly share code, notes, and snippets.

@dvgodoy
Created June 10, 2018 15:17
Show Gist options
  • Save dvgodoy/0e8b4d997912a98360bb00d34b26cccc to your computer and use it in GitHub Desktop.
Save dvgodoy/0e8b4d997912a98360bb00d34b26cccc to your computer and use it in GitHub Desktop.
import numpy as np
from keras import backend as K
from keras.initializers import VarianceScaling
fan_in = fan_out = 100
stddev = np.sqrt(1. / fan_in)
normal_values = K.eval(K.random_normal(shape=(fan_in, fan_out), stddev=stddev)).ravel()
truncated_values = K.eval(K.truncated_normal(shape=(fan_in, fan_out), stddev=stddev)).ravel()
var_scaling_values = K.eval(VarianceScaling(mode='fan_in')(shape=(fan_in, fan_out))).ravel()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment