https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/
https://ndres.me/post/best-jupyter-notebook-extensions/
https://towardsdatascience.com/machine-learning-from-scratch-part-1-76603dececa6
https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://towardsdatascience.com/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c
https://alyssaq.github.io/2015/visualising-matrices-and-affine-transformations-with-python/
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
http://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html
https://distill.pub/2017/momentum/
http://cs231n.github.io/python-numpy-tutorial/
https://jalammar.github.io/gentle-visual-intro-to-data-analysis-python-pandas/
https://towardsdatascience.com/quick-dive-into-pandas-for-data-science-cc1c1a80d9c4
https://jalammar.github.io/visualizing-pandas-pivoting-and-reshaping/
https://github.com/mm-mansour/Fast-Pandas/blob/master/README.md
https://jeffdelaney.me/blog/useful-snippets-in-pandas/
https://github.com/pandas-profiling/pandas-profiling
https://medium.com/jbennetcodes/dealing-with-datetimes-like-a-pro-in-pandas-b80d3d808a7f
https://towardsdatascience.com/basic-time-series-manipulation-with-pandas-4432afee64ea
https://www.ritchieng.com/pandas-introduction/
https://www.fast.ai/2017/11/13/validation-sets/
https://towardsdatascience.com/how-dis-similar-are-my-train-and-test-data-56af3923de9b
https://heartbeat.fritz.ai/model-evaluation-selection-i-30d803a44ee
https://towardsdatascience.com/the-use-of-knn-for-missing-values-cf33d935c637
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://patsy.readthedocs.io/en/latest/overview.html
http://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://towardsdatascience.com/a-feature-selection-tool-for-machine-learning-in-python-b64dd23710f0
https://github.com/DistrictDataLabs/yellowbrick/blob/develop/README.md
https://elitedatascience.com/imbalanced-classes
https://blog.dominodatalab.com/imbalanced-datasets/
http://setosa.io/ev/principal-component-analysis/
https://towardsdatascience.com/unsupervised-learning-with-python-173c51dc7f03
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
http://setosa.io/ev/ordinary-least-squares-regression/
https://towardsdatascience.com/5-types-of-regression-and-their-properties-c5e1fa12d55e
https://towardsdatascience.com/building-a-logistic-regression-in-python-301d27367c24
https://hackernoon.com/i-built-a-linearregression-that-can-play-pong-with-me-7b00d73f3fcc
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/
https://towardsdatascience.com/polynomial-regression-bbe8b9d97491
https://utkuufuk.github.io/2018/05/04/learning-curves/
https://www.dataquest.io/blog/learning-curves-machine-learning/
https://thomas-tanay.github.io/post--L2-regularization/
https://towardsdatascience.com/i-support-vector-machines-and-so-should-you-7af122b6748
https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
https://dash-gallery.plotly.host/dash-svm
http://colah.github.io/posts/2015-09-Visual-Information/
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/
https://lethalbrains.com/learn-ml-algorithms-by-coding-decision-trees-439ac503c9a4
https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d
https://towardsdatascience.com/confused-by-the-confusion-matrix-e26d5e1d74eb
https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used
http://sujitpal.blogspot.com/2016/12/random-vs-grid-search-which-is-better.html
https://medium.com/polyaxon/hyperparameters-tuning-with-polyaxon-9403f8ea85be
https://towardsdatascience.com/understanding-model-predictions-with-lime-a582fdff3a3b
https://github.com/marcotcr/lime/blob/master/README.md
https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27
https://github.com/slundberg/shap
https://christophm.github.io/interpretable-ml-book/index.html
https://realpython.com/python-matplotlib-guide/
https://python-graph-gallery.com/
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://serialmentor.com/dataviz/
https://github.com/ContextLab/hypertools
https://medium.com/@keeper6928/how-to-unit-test-machine-learning-code-57cf6fd81765
https://p.migdal.pl/interactive-machine-learning-list/
https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/
https://jalammar.github.io/feedforward-neural-networks-visual-interactive/
http://neuralnetworksanddeeplearning.com/chap4.html
https://github.com/keplr-io/quiver