Created
July 6, 2016 19:39
-
-
Save dwblair/9b93f0b74981d380177c583cda85d892 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <SPI.h> | |
#include <SD.h> | |
// Set the pins used | |
#define cardSelect 4 | |
#define switchPin 12 | |
File logfile; | |
bool stopPin = true; | |
// blink out an error code | |
void error(uint8_t errno) { | |
while(1) { | |
uint8_t i; | |
for (i=0; i<errno; i++) { | |
digitalWrite(13, HIGH); | |
delay(200); | |
digitalWrite(13, LOW); | |
delay(200); | |
} | |
for (i=errno; i<10; i++) { | |
delay(500); | |
} | |
} | |
} | |
// This line is not needed if you have Adafruit SAMD board package 1.6.2+ | |
// #define Serial SerialUSB | |
void setup() { | |
analogReadResolution(12); | |
// ---- PWM | |
REG_GCLK_GENDIV = GCLK_GENDIV_DIV(3) | // Divide the 48MHz clock source by divisor 3: 48MHz/3=16MHz | |
GCLK_GENDIV_ID(4); // Select Generic Clock (GCLK) 4 | |
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization | |
REG_GCLK_GENCTRL = GCLK_GENCTRL_IDC | // Set the duty cycle to 50/50 HIGH/LOW | |
GCLK_GENCTRL_GENEN | // Enable GCLK4 | |
GCLK_GENCTRL_SRC_DFLL48M | // Set the 48MHz clock source | |
GCLK_GENCTRL_ID(4); // Select GCLK4 | |
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization | |
// Enable the port multiplexer for the 4 PWM channels: timer TCC0 outputs | |
const uint8_t CHANNELS = 4; | |
const uint8_t pwmPins[] = { 2, 5, 6, 7 }; | |
for (uint8_t i = 0; i < CHANNELS; i++) | |
{ | |
PORT->Group[g_APinDescription[pwmPins[i]].ulPort].PINCFG[g_APinDescription[pwmPins[i]].ulPin].bit.PMUXEN = 1; | |
} | |
// Connect the TCC0 timer to the port outputs - port pins are paired odd PMUO and even PMUXE | |
// F & E specify the timers: TCC0, TCC1 and TCC2 | |
PORT->Group[g_APinDescription[2].ulPort].PMUX[g_APinDescription[2].ulPin >> 1].reg = PORT_PMUX_PMUXO_F | PORT_PMUX_PMUXE_F; | |
PORT->Group[g_APinDescription[6].ulPort].PMUX[g_APinDescription[6].ulPin >> 1].reg = PORT_PMUX_PMUXO_F | PORT_PMUX_PMUXE_F; | |
// Feed GCLK4 to TCC0 and TCC1 | |
REG_GCLK_CLKCTRL = GCLK_CLKCTRL_CLKEN | // Enable GCLK4 to TCC0 and TCC1 | |
GCLK_CLKCTRL_GEN_GCLK4 | // Select GCLK4 | |
GCLK_CLKCTRL_ID_TCC0_TCC1; // Feed GCLK4 to TCC0 and TCC1 | |
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization | |
// Dual slope PWM operation: timers countinuously count up to PER register value then down 0 | |
REG_TCC0_WAVE |= TCC_WAVE_POL(0xF) | // Reverse the output polarity on all TCC0 outputs | |
TCC_WAVE_WAVEGEN_DSBOTTOM; // Setup dual slope PWM on TCC0 | |
while (TCC0->SYNCBUSY.bit.WAVE); // Wait for synchronization | |
// Each timer counts up to a maximum or TOP value set by the PER register, | |
// this determines the frequency of the PWM operation: | |
// 400 = 20kHz; 800= 10 kHz; 4000 = 2 kHz | |
REG_TCC0_PER = 800; // Set the frequency of the PWM on TCC0 to X khz | |
while(TCC0->SYNCBUSY.bit.PER); | |
// The CCBx register value corresponds to the pulsewidth in microseconds (us) | |
REG_TCC0_CCB0 = 200; // TCC0 CCB0 - 50% duty cycle on D2 | |
while(TCC0->SYNCBUSY.bit.CCB0); | |
REG_TCC0_CCB1 = 200; // TCC0 CCB1 - 50% duty cycle on D5 | |
while(TCC0->SYNCBUSY.bit.CCB1); | |
REG_TCC0_CCB2 = 200; // TCC0 CCB2 - 50% duty cycle on D6 | |
while(TCC0->SYNCBUSY.bit.CCB2); | |
REG_TCC0_CCB3 = 200; // TCC0 CCB3 - 50% duty cycle on D7 | |
while(TCC0->SYNCBUSY.bit.CCB3); | |
// Divide the 16MHz signal by 1 giving 16MHz (62.5ns) TCC0 timer tick and enable the outputs | |
REG_TCC0_CTRLA |= TCC_CTRLA_PRESCALER_DIV1 | // Divide GCLK4 by 1 | |
TCC_CTRLA_ENABLE; // Enable the TCC0 output | |
while (TCC0->SYNCBUSY.bit.ENABLE); // Wait for synchronization | |
// ----------- LOGGING | |
// connect at 115200 so we can read the GPS fast enough and echo without dropping chars | |
// also spit it out | |
Serial.begin(9600); | |
Serial.println("\r\nAnalog logger test"); | |
pinMode(13, OUTPUT); | |
// see if the card is present and can be initialized: | |
if (!SD.begin(cardSelect)) { | |
Serial.println("Card init. failed!"); | |
error(2); | |
} | |
char filename[15]; | |
strcpy(filename, "ANALOG00.TXT"); | |
for (uint8_t i = 0; i < 100; i++) { | |
filename[6] = '0' + i/10; | |
filename[7] = '0' + i%10; | |
// create if does not exist, do not open existing, write, sync after write | |
if (! SD.exists(filename)) { | |
break; | |
} | |
} | |
logfile = SD.open(filename, FILE_WRITE); | |
if( ! logfile ) { | |
Serial.print("Couldnt create "); | |
Serial.println(filename); | |
error(3); | |
} | |
Serial.print("Writing to "); | |
Serial.println(filename); | |
pinMode(13, OUTPUT); | |
pinMode(8, OUTPUT); | |
Serial.println("Ready!"); | |
pinMode(switchPin, INPUT_PULLUP); | |
logfile.println("time, A0, A1"); | |
Serial.println("time, A0, A2"); | |
} | |
uint8_t i=0; | |
void loop() { | |
while(stopPin != false){ | |
digitalWrite(8, HIGH); | |
logfile.print(millis()); logfile.print(", "); logfile.print(analogRead(0)); logfile.print(", "); logfile.println(analogRead(1)); | |
Serial.print(millis()); Serial.print(", "); Serial.print(analogRead(0)); Serial.print(", "); Serial.println(analogRead(1)); | |
digitalWrite(8, LOW); | |
stopPin = digitalRead(switchPin); | |
delay(100); | |
} | |
logfile.flush(); | |
error(5); // flash 5 times to indicate stop condition | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment