It's recommended that you install the requirements for these t5 models in a new environment since they are known to conflict with common Python package requirements in the scientific Python Stack.
conda create -n nlp-t5
import time | |
import threading | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
class ApiClient: | |
def __init__(self): | |
pass | |
@RateLimiter(rate_limit=5, rate_unit="seconds") | |
def make_request(self, data): |
import regex | |
import unicodedata | |
# Precompile the regex pattern for removing unwanted characters (do this outside of any iteration since it's an expensive operation) | |
remove_pattern = regex.compile(r'[\p{P}\p{S}\p{M}\p{C}\p{Z}]+', regex.UNICODE) | |
def clean_unicode_text(text): | |
# Normalize the Unicode text | |
normalized_text = unicodedata.normalize('NFKD', text) | |
import finplot as fplt | |
import yfinance | |
df = yfinance.download('AAPL') | |
d = df[['Open', 'Close', 'High', 'Low']].reset_index(drop=True) | |
fplt.candlestick_ochl(d) | |
fplt.show() |
--- eventloops.py-orig 2020-12-12 10:22:08.633178000 -0800 | |
+++ eventloops.py 2020-12-12 10:22:56.335735100 -0800 | |
@@ -20,7 +20,7 @@ | |
Checks if we are on OS X 10.9 or greater. | |
""" | |
- return sys.platform == 'darwin' and V(platform.mac_ver()[0]) >= V('10.9') | |
+ return sys.platform == 'darwin' and V(platform.mac_ver()[0]) >= V('10.9') and platform.mac_ver()[2] != 'arm64' | |
## import any sklearn models and collect predictions / probabilities beforehand | |
import matplotlib.pyplot as plt | |
from cycler import cycler | |
## Line color config -- rather than create a structure with a finite color palette, use your own to cycle through a list. | |
default_cycler = (cycler(color=['r', 'g', 'b', 'y']) + | |
cycler(linestyle=['-', '--', ':', '-.'])) | |
plt.rc('axes', prop_cycle = default_cycler) |
def fetch_states(): | |
""" | |
Return all <option> values for the <select> element with all states. | |
""" | |
data = {} | |
states = tree.xpath('//select[@name="state"]') | |
try: | |
for state in states[0].xpath('option'): | |
data[state.attrib['value']] = state.text_content() | |
except: |