Skip to content

Instantly share code, notes, and snippets.

@dzhulgakov
dzhulgakov / otel_client_example.py
Created October 23, 2024 20:09
Example script to call Fireworks LLM service with OTEL
import http.client
import json
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor, ConsoleSpanExporter
from opentelemetry.trace import SpanKind, set_tracer_provider
from opentelemetry.trace.propagation.tracecontext import TraceContextTextMapPropagator
from opentelemetry.sdk.resources import Resource
from opentelemetry.semconv.resource import ResourceAttributes
import random
import copy
import os
import random
from itertools import chain
import numpy as np
import torch
import torch.nn as nn
This file has been truncated, but you can view the full file.
dnnl_verbose,info,DNNL v1.2.0 (commit 70f8b879ea7a0c38caedb3320b7c85e8497ff50d)
dnnl_verbose,info,cpu,runtime:OpenMP
dnnl_verbose,info,cpu,isa:Intel AVX2
dnnl_verbose,info,gpu,runtime:none
dnnl_verbose,exec,cpu,reorder,simple:any,undef,src_f32::blocked:abcd:f0 dst_f32::blocked:abcd:f0,,,64x3x7x7,0.0249023
dnnl_verbose,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abcd:f0 dst_f32::blocked:Acdb8a:f0,,,64x3x7x7,0.0161133
dnnl_verbose,exec,cpu,reorder,simple:any,undef,src_f32::blocked:a:f0 dst_f32::blocked:a:f0,,,64,0
dnnl_verbose,exec,cpu,reorder,simple:any,undef,src_f32::blocked:a:f0 dst_f32::blocked:a:f0,,,64,0
dnnl_verbose,exec,cpu,reorder,simple:any,undef,src_f32::blocked:a:f0 dst_f32::blocked:a:f0,,,64,0
dnnl_verbose,exec,cpu,reorder,simple:any,undef,src_f32::blocked:a:f0 dst_f32::blocked:a:f0,,,64,0
#!/usr/bin/env python
from __future__ import division
"""
Creates a ResNeXt Model as defined in:
Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016).
Aggregated residual transformations for deep neural networks.
arXiv preprint arXiv:1611.05431.
import from https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua
"""
#!/usr/bin/env python
from __future__ import division
"""
Creates a ResNeXt Model as defined in:
Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016).
Aggregated residual transformations for deep neural networks.
arXiv preprint arXiv:1611.05431.
import from https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua
"""
import numpy as np
from caffe2.python import workspace, core
def run_chunk(device, reset_layout):
np.random.seed(1701)
ws = workspace.C.Workspace()
ws.create_blob('relu4').feed(np.random.randn(1, 256, 13, 13).astype(np.float32), device_option=core.DeviceOption(device))
ws.create_blob('conv5_w').feed(np.random.randn(256, 256, 3, 3).astype(np.float32), device_option=core.DeviceOption(device))
ws.create_blob('conv5_b').feed(np.random.randn(256).astype(np.float32), device_option=core.DeviceOption(device))
from dataclasses import dataclass
@dataclass
class Config:
x: int
y: str
def configurable(f):
f.config = Config
return f
#include <cstdio>
#include <cstring>
using namespace std;
int main() {
long long a[10];
bool done[10];
memset(a,0,sizeof a);
memset(done,0,sizeof done);
for (long long x = 1; x < 10000000000LL; x++) {
#include <cstdio>
#include <cstring>
using namespace std;
int main() {
long long a[10];
bool done[10];
memset(a,0,sizeof a);
memset(done,0,sizeof done);
for (long long x = 1; x < 10000000000LL; x++) {
diff --git a/build/aten/src/ATen/Declarations.yaml b/build/aten/src/ATen/Declarations.yaml
index 0249f2d66b..3909d80a00 100644
--- a/build/aten/src/ATen/Declarations.yaml
+++ b/build/aten/src/ATen/Declarations.yaml
@@ -2,6 +2,7 @@
operator_name: _cast_Byte
overload_name: ''
use_c10_dispatcher: true
+ category_override: ''
matches_jit_signature: true