Last active
June 26, 2018 08:48
-
-
Save e-mon/35e3ab798ef67e821b3752c0cfa793f3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# from https://www.kaggle.com/samratp/wordbatch-ridge-fm-frtl-target-encoding-lgbm/notebook | |
class TargetEncoder: | |
# Adapted from https://www.kaggle.com/ogrellier/python-target-encoding-for-categorical-features | |
def __repr__(self): | |
return 'TargetEncoder' | |
def __init__(self, smoothing=1, min_samples_leaf=1, noise_level=0, keep_original=False, suffix='enc'): | |
self.smoothing = smoothing | |
self.min_samples_leaf = min_samples_leaf | |
self.noise_level = noise_level | |
self.keep_original = keep_original | |
self.suffix = suffix | |
@staticmethod | |
def add_noise(series, noise_level): | |
return series * (1 + noise_level * np.random.randn(len(series))) | |
def encode(self, train, test, target, cols, suffix=None): | |
if suffix is None: | |
suffix = self.suffix | |
for col in cols: | |
if self.keep_original: | |
train[col + suffix], test[col + suffix] = self.encode_column(train[col], test[col], target) | |
else: | |
train[col], test[col] = self.encode_column(train[col], test[col], target) | |
return train, test | |
def encode_column(self, trn_series, tst_series, target): | |
temp = pd.concat([trn_series, target], axis=1) | |
# Compute target mean | |
averages = temp.groupby(by=trn_series.name)[target.name].agg(["mean", "count"]) | |
# Compute smoothing | |
smoothing = 1 / (1 + np.exp(-(averages["count"] - self.min_samples_leaf) / self.smoothing)) | |
# Apply average function to all target data | |
prior = target.mean() | |
# The bigger the count the less full_avg is taken into account | |
averages[target.name] = prior * (1 - smoothing) + averages["mean"] * smoothing | |
averages.drop(['mean', 'count'], axis=1, inplace=True) | |
# Apply averages to trn and tst series | |
ft_trn_series = pd.merge( | |
trn_series.to_frame(trn_series.name), | |
averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), | |
on=trn_series.name, | |
how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) | |
# pd.merge does not keep the index so restore it | |
ft_trn_series.index = trn_series.index | |
ft_tst_series = pd.merge( | |
tst_series.to_frame(tst_series.name), | |
averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), | |
on=tst_series.name, | |
how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) | |
# pd.merge does not keep the index so restore it | |
ft_tst_series.index = tst_series.index | |
return self.add_noise(ft_trn_series, self.noise_level), self.add_noise(ft_tst_series, self.noise_level) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment