Skip to content

Instantly share code, notes, and snippets.

@e-p-armstrong
Created April 9, 2024 01:27
Show Gist options
  • Save e-p-armstrong/b85e13d044c47b0bfb60b61ad7daeefd to your computer and use it in GitHub Desktop.
Save e-p-armstrong/b85e13d044c47b0bfb60b61ad7daeefd to your computer and use it in GitHub Desktop.
# Machine Intelligence Made to Impersonate Characteristics: MIMIC
# NOTE run this $ conda install -c conda-forge mpi4py mpich to get mpi working
# accelerate launch --use_deepspeed -m axolotl.cli.train ./config_name_here
base_model: alpindale/Mistral-7B-v0.2-hf
base_model_config: alpindale/Mistral-7B-v0.2-hf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: humanityendures.json
ds_type: json
type: completion
- path: json
data_files: gpt_data_export.jsonl
ds_type: json
type: sharegpt
- path: json
data_files: personal_notes_sharegpt.jsonl
ds_type: json
type: sharegpt
- path: json
data_files: substack_json_data.json
ds_type: json
type: sharegpt
dataset_prepared_path: mimic_run_prepared
output_dir: ./mimic_evan
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: mimic-experiment-1
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 6
eval_batch_size: 6
num_epochs: 3
optimizer: galore_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0000035
cosine_min_lr_ratio: 0
weight_decay: 0.1
# adamw hyperparams
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 0.00000001
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 5
optim_args:
#For Galore Optimizers the following optim_args are available
rank: 256 # type: int
update_proj_gap: 200 # type: int
scale: 0.25 # type: float
proj_type: "std" # type: str, default = std
optim_target_modules:
- mlp
- self_attn
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_offload_params: false
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
warmup_steps: 10
auto_resume_from_checkpoints: false
#warmup_ratio: 0.5
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 2
debug:
deepspeed: deepspeed_configs/zero2.json
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment