Created
October 12, 2019 12:15
-
-
Save e96031413/659746b2d213a9574b5898f2393a8b6c to your computer and use it in GitHub Desktop.
YOLOv3的cfg檔案(針對單class)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[net] | |
# Testing | |
# batch=1 | |
# subdivisions=1 | |
# Training | |
batch=16 | |
subdivisions=16 | |
width=288 # input image resolution in width | |
height=288 # input image resolution in height | |
channels=3 # color space of input image | |
momentum=0.9 # penalization of large weight fluctuation between iterations | |
decay=0.0005 # penalization of large weights when overfitting | |
angle=0 # data augmentation: randomly rotate the given image by +/- angle | |
saturation = 1.5 # data augmentation | |
exposure = 1.5 # data augmentation | |
hue=.1 # data augmentation | |
learning_rate=0.001 # how aggressively we should learn | |
burn_in=1000 # increase the training speed when learning rate is low | |
max_batches = 31200 # max. number of iterations | |
policy=steps # learning rate decreasing policy | |
steps=400000,450000 # remain learning rate constant for steps/iterations | |
scales=.1,.1 # new learning rate with multiplication of scales after steps | |
[convolutional] | |
batch_normalize=1 | |
filters=32 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
# Downsample | |
[convolutional] | |
batch_normalize=1 | |
filters=64 | |
size=3 | |
stride=2 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=32 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=64 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
# Downsample | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=3 | |
stride=2 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=64 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=64 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
# Downsample | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=2 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
# Downsample | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=2 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
# Downsample | |
[convolutional] | |
batch_normalize=1 | |
filters=1024 | |
size=3 | |
stride=2 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=1024 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=1024 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=1024 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=1024 | |
size=3 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[shortcut] | |
from=-3 | |
activation=linear | |
###################### | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=1024 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=1024 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=512 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=1024 | |
activation=leaky | |
[convolutional] | |
size=1 | |
stride=1 | |
pad=1 | |
filters=18 # set filters=(classes+5)*3 at line 603 | |
activation=linear | |
[yolo] | |
mask = 6,7,8 | |
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
classes=1 # number of categories we want to detect at line 610 | |
num=9 | |
jitter=.3 | |
ignore_thresh = .7 | |
truth_thresh = 1 | |
random=1 | |
[route] | |
layers = -4 | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[upsample] | |
stride=2 | |
[route] | |
layers = -1, 61 | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=512 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=512 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=256 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=512 | |
activation=leaky | |
[convolutional] | |
size=1 | |
stride=1 | |
pad=1 | |
filters=18 # set filters=(classes+5)*3 at line 689 | |
activation=linear | |
[yolo] | |
mask = 3,4,5 | |
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
classes=1 # number of categories we want to detect at line 696 | |
num=9 | |
jitter=.3 | |
ignore_thresh = .7 | |
truth_thresh = 1 | |
random=1 | |
[route] | |
layers = -4 | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[upsample] | |
stride=2 | |
[route] | |
layers = -1, 36 | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=256 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=256 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
filters=128 | |
size=1 | |
stride=1 | |
pad=1 | |
activation=leaky | |
[convolutional] | |
batch_normalize=1 | |
size=3 | |
stride=1 | |
pad=1 | |
filters=256 | |
activation=leaky | |
[convolutional] | |
size=1 | |
stride=1 | |
pad=1 | |
filters=18 # set filters=(classes+5)*3 at line 776 | |
activation=linear | |
[yolo] | |
mask = 0,1,2 | |
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
classes=1 # number of categories we want to detect at line 783 | |
num=9 | |
jitter=.3 | |
ignore_thresh = .7 | |
truth_thresh = 1 | |
random=1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment