Last active
September 30, 2022 14:26
-
-
Save ebirn/36b3a3c863224423557db784fc3d292d to your computer and use it in GitHub Desktop.
SLURM job efficiency
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# porting of https://github.com/SchedMD/slurm/blob/master/contribs/seff/seff | |
# | |
# sacct -P -n -a --format JobID,State,Cluster,AllocCPUS,REQMEM,TotalCPU,Elapsed,MaxRSS,ExitCode,NNodes,NTasks -j 12655203 | |
# sacct --format=Jobid,JobName,State,QOS,Partition%5,Timelimit,Elapsed,NCPU,CPUTime,TotalCpu,SystemCPU,UserCPU,ReqMem,MaxRSS,MaxVMSize $@ | |
import sys | |
import subprocess | |
import json | |
from collections import Counter | |
#sacct_cmd = ['/usr/bin/sacct', '--json', '-n', '-a', '--partition', 'xyz', '-A', 'someaccount', '--start', '2022-09-23'] | |
sacct_cmd = ['/usr/bin/sacct', '--json'] + sys.argv[1:] | |
sacct = subprocess.Popen(sacct_cmd, stdout=subprocess.PIPE) | |
json_out = json.load(sacct.stdout) | |
#works in python 3.0+ | |
#for line in proc.stdout: | |
job_state_cnt = Counter() | |
job_account_cnt = Counter() | |
job_partition_cnt = Counter() | |
job_qos_cnt = Counter() | |
slurm_jobs = [] | |
job = {} | |
job_num = None | |
step_name = None | |
job_prefix = None | |
from datetime import datetime, timedelta | |
skip_states = set(['PENDING', 'RUNNING']) | |
detail_states = set(['FAILED', 'NODE_FAIL', 'OUT_OF_MEMORY', 'TIMEOUT']) | |
good_states = set(['COMPLETED']) | |
print(f"showing job details for states: {', '.join(detail_states) }") | |
def print_jobstats(job_state, info, force=False): | |
if force or job_state in detail_states: | |
print(info) | |
global_stats = [] | |
for slurm_job in json_out['jobs']: | |
job_stats = {'waiting': 0.0} | |
job_time = slurm_job['time'] | |
job_required = slurm_job['required'] | |
job_state = slurm_job['state']['current'] | |
job_state_cnt.update([job_state]) | |
job_account_cnt.update([slurm_job['account']]) | |
job_partition_cnt.update([slurm_job['partition']]) | |
job_qos_cnt.update([slurm_job['qos']]) | |
job_state = slurm_job['state']['current'] | |
# pending or running have no usable information yet | |
if slurm_job['state']['current'] in skip_states: | |
continue | |
# collect global stats of good jobs only | |
if job_state in good_states: | |
global_stats.append(job_stats) | |
# for skipit in skip_states: | |
# if skipit in slurm_job['state']['current']: | |
# ##if slurm_job['state']['current'] in skip_states: | |
# # print(f"skipping {slurm_job['job_id']}:{slurm_job['name']} -> {slurm_job['state']['current']}") | |
# continue | |
job_stats['elapsed_eff'] = float(slurm_job['time']['elapsed']) / (float(slurm_job['time']['limit']) * 60.0) | |
#FIXME: bug in sacct: submission == start (it's actually the submission time that is correct, start time is not on job level. | |
# check step 'batch' start time for this | |
# job_stats['waiting'] = (float(slurm_job['time']['start']) - float(slurm_job['time']['submission'])) / 60.0 / 60.0 | |
print_jobstats (job_state, f"job: {slurm_job['job_id']} {slurm_job['name']} ({job_state})") | |
step_total_weight = job_time['elapsed'] | |
list_stats = [] | |
for idx, job_step in enumerate(slurm_job['steps']): | |
step_stats = {} | |
#step_stats['name'] = job_step['step']['name'] | |
#print(f" step: {job_step['step']['name']}") | |
# ignore external step, will mostly be 0 | |
if job_step['step']['name'] == 'extern': | |
continue | |
list_stats.append(step_stats) | |
# job_step['tres']['requested'] | |
# job_step['tres']['consumed'] | |
tres_alloc = {} | |
step_time = job_step['time'] | |
# step_total_weight += tres['count'] | |
step_stats['weight']=0.0 | |
if step_total_weight > 0.0: | |
step_stats['weight'] = step_time['elapsed']/step_total_weight | |
step_duration_hrs = float(step_time['elapsed']) / 60.0 / 60.0 | |
step_stats['node_hrs'] = job_step['nodes']['count'] * step_duration_hrs | |
for tres in job_step['tres']['allocated']: | |
tres_type = tres['type'] | |
hrs_name = tres_type + '_hrs' | |
if tres['count']: | |
step_stats[hrs_name] = tres['count'] * step_duration_hrs | |
# memory in GB hours | |
if tres_type == 'mem': | |
step_stats[hrs_name] = tres['count'] * step_duration_hrs / 1024.0 | |
# tres: type name id count | |
# print(" allocated: {type}: {count}".format(**tres)) | |
tres_alloc[tres_type] = tres['count'] | |
for tres in job_step['tres']['requested']['total']: | |
# print(" requested: {type}: {count}".format(**tres)) | |
tres_type = tres['type'] | |
eff_name = tres_type + '_eff' | |
# skip if we have no alloc record of consumed resource | |
if tres_type not in tres_alloc or tres_alloc[tres_type] is None: | |
continue | |
tres_factor = tres['count'] / tres_alloc[tres_type] | |
if tres_type == 'mem' and tres.get('count') is not None: | |
tres_factor = tres['count'] / (tres_alloc[tres_type] * 1024.0 * 1024.0) | |
if step_stats.get(eff_name) is None: | |
step_stats[eff_name] = tres_factor | |
if step_stats['weight'] == 0: | |
continue | |
if idx==0: | |
# use 'batch; step as actual start time, the timestamp on "job" object level is incorrect | |
job_stats['waiting'] = (float(step_time['start']) - float(slurm_job['time']['submission'])) / 60.0 / 60.0 | |
## step_stats['cpu_eff'] = step_time['elapsed'] * tres_alloc['cpu'] / (step_time['total']['seconds'] + (step_time['total']['microseconds']/1000.0)) | |
#step_stats['cpu_eff'] = (step_time['total']['seconds'] + (step_time['total']['microseconds']/1000000.0)) / tres_alloc['cpu'] / step_time['elapsed'] | |
step_stats['cpu_eff'] = float(step_time['total']['seconds'] + (step_time['total']['microseconds']/1000000.0)) / float(tres_alloc['cpu']) / float(step_time['elapsed']) | |
# print step statistics line | |
step_stats_str = '' | |
for sss in step_stats: | |
step_stats_str += f" { sss }: {step_stats[sss]:4.2f}" | |
#print(f" step {job_step['step']['name']:8s}: {step_stats_str}") | |
# print(f"calcing: {step_stats['cpu_eff']}") | |
# print(f" step {idx}: {job_step['step']['name']}") | |
#print(f" stats: {step_stats}") | |
#print(f" step tres alloc: { job_step['tres']['allocated'] }") | |
#print(f" step tres req: { job_step['tres']['requested']['total'] }") | |
# print(f" alloc: {tres_alloc}") | |
# print(f" time: {step_time}") | |
#job_stats['cpu_eff'] = jobstats.get('cpu_eff', 0.0) + () | |
#print(f"total weight: {step_total_weight}") | |
## add up weighted step stats | |
for eff in ['cpu_eff', 'mem_eff']: | |
job_stats[eff] = sum(item[eff]*item['weight'] for item in list_stats) | |
for hrs in ['cpu_hrs', 'mem_hrs', 'gres_hrs', 'node_hrs']: | |
job_stats[hrs] = sum(item.get(hrs, 0.0) for item in list_stats) | |
summary_stats_str = '' | |
if job_stats['waiting'] > 0.01: | |
summary_stats_str += f" waiting: {job_stats['waiting']:4.2f} hrs " | |
summary_stats_str += '\n' | |
summary_stats_str += f" job eff: " | |
for stat in job_stats: | |
if stat.endswith('_eff'): | |
summary_stats_str += f"{ stat }: {100.0*job_stats[stat]:2.1f}% " | |
summary_stats_str += '\n resource hours: ' | |
for stat in job_stats: | |
if stat.endswith('_hrs'): | |
summary_stats_str += f" { stat }: {job_stats[stat]:2.1f}h" | |
print_jobstats (job_state, summary_stats_str) | |
# print('===') | |
def counter_summary(cc): | |
return ', '.join([f"{key}: {cnt}" for key,cnt in cc.items()]) | |
def print_stats(data, name, unit, scale=1.0): | |
import statistics | |
import math | |
import operator | |
from functools import reduce | |
value_list = [stats[name] for stats in data] | |
stat_mean = statistics.mean(value_list) | |
stat_median = statistics.median(value_list) | |
non_zero_list = list(filter(lambda x: x>0.0, value_list)) | |
stat_geomean = 0.0 | |
if len(non_zero_list) > 0: | |
stat_geomean = float(reduce(operator.mul, non_zero_list, 1)) ** (1.0/float(len(non_zero_list))) #math.prod(value_list) ** (1.0/len(value_list)) | |
# python 3.8 | |
# stat_quantiles = statistics.quantiles(value_list) | |
print(f" {name:12s}: median: {scale * stat_median:6.2f} {unit}, geomean: {scale * stat_geomean:6.2f} {unit}, avg: { scale * stat_mean:6.2f} {unit}, min: {scale * min(value_list):6.2f} {unit}, max: {scale * max(value_list):6.2f} {unit}, total: {scale * sum(value_list):6.2f} {unit}") | |
print ("done.") | |
print() | |
print ("generated from output of: " + " ".join(sacct_cmd)) | |
print(f"SUMMARY of { sum(job_state_cnt.values()) } jobs:") | |
print("job states:", counter_summary(job_state_cnt)) | |
print("job accounts:", counter_summary(job_account_cnt)) | |
print("job partition:", counter_summary(job_partition_cnt)) | |
print("job qos:", counter_summary(job_qos_cnt)) | |
print(f"stats for {len(global_stats)} COMPLETED jobs:") | |
print_stats(global_stats, 'waiting', 'h') | |
for k in ['elapsed_eff', 'cpu_eff', 'mem_eff']: | |
print_stats(global_stats, k, '%') | |
# resource hours | |
print("consumed resource hours:") | |
for k in ['cpu_hrs', 'gres_hrs', 'mem_hrs', 'node_hrs']: | |
print_stats(global_stats, k, 'h') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment