Created
December 16, 2015 12:14
-
-
Save ebothmann/f5b86a8bd4748070e41c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python3 | |
| from scipy.integrate import odeint | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from matplotlib import animation | |
| # phase space points y = (X, phi, X', phi') | |
| # length in units of l | |
| # time in units of 1 / \omega_P | |
| # inverse mass ratio: (m + M)/m | |
| mu_inv = 4 | |
| # squared ratio of uncoupled frequencies: \omega_F^2 / \omega_P^2 | |
| w2 = 4**2 | |
| def f(y, t): | |
| pos, vel = y[:2], y[2:] | |
| f = np.zeros(len(y)) | |
| f[:2] = vel | |
| acc = f[2:] | |
| sin, cos = np.sin(pos[1]), np.cos(pos[1]) | |
| acc[0] = ((cos + vel[1]**2)*sin - w2*pos[0]) / (mu_inv - cos**2) | |
| acc[1] = -sin - cos*acc[0] | |
| return f | |
| phi0 = np.pi * 0.8 | |
| X0 = phi0/2 | |
| y0 = (X0, phi0, 0, 0) | |
| dt = 0.01 | |
| ts = np.arange(0.0, 50, dt) | |
| result = odeint(f, y0, ts) | |
| colors = ['black']*2 # mpl.rcParams["axes.color_cycle"] | |
| fig = plt.figure() | |
| ax = fig.add_subplot(111, autoscale_on=False, aspect='equal') | |
| ax.set_xlim(-2.5, 2.5) | |
| ax.set_ylim(-1.2, 1.2) | |
| ax.set_xlabel(r'$x\;[\ell]$') | |
| ax.set_ylabel(r'$y\;[\ell]$') | |
| ax.grid() | |
| spring_line = ax.plot([], [], color=colors[0])[0] | |
| spring_mass = ax.plot([], [], 'o', color=colors[0])[0] | |
| pendulum_line = ax.plot([], [], color=colors[1])[0] | |
| pendulum_mass = ax.plot([], [], 'o', color=colors[1])[0] | |
| time_template = r'$t = %.1f / \omega_P$' | |
| time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes, | |
| bbox=dict(facecolor='white', edgecolor='black')) | |
| def set_plot_data(y): | |
| X, phi = y[0:2] | |
| spring_line.set_data([-2.5, X], [0, 0]) | |
| spring_mass.set_data([X], [0]) | |
| sin, cos = np.sin(phi), np.cos(phi) | |
| pendulum_line.set_data([X, X + sin], [0, -cos]) | |
| pendulum_mass.set_data(X + sin, -cos) | |
| def init(): | |
| set_plot_data(y0) | |
| animation_step_size = 3 | |
| frames = result.shape[0]//animation_step_size | |
| def animate(i): | |
| i *= animation_step_size | |
| set_plot_data(result[i]) | |
| time_text.set_text(time_template % (i * dt)) | |
| ani = animation.FuncAnimation(fig, animate, frames=frames, blit=False, | |
| repeat=True) | |
| ani.save('coupled_oscillations.mp4', fps=60, extra_args=['-vcodec', 'libx264']) | |
| fig.clear() | |
| plt.plot(ts, result[:, :2]) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment