Last active
October 29, 2016 21:19
-
-
Save ebressert/f7a969339ccec94138d4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import seaborn as sns | |
from scipy.optimize import curve_fit | |
# Function for linear fit | |
def func(x, a, b): | |
return a + b * x | |
# Seaborn conveniently provides the data for | |
# Anscombe's quartet. | |
df = sns.load_dataset("anscombe") | |
dset = df.dataset.unique() | |
# Computing basic stats and linear regression | |
# all groups. | |
for data in dset: | |
tmp = df.loc[df.dataset == data] | |
print 'Data {0}'.format(data) | |
print 'Mean x: {0:.1f}'.format(tmp.x.mean()) | |
print 'Mean y: {0:.1f}'.format(tmp.y.mean()) | |
print 'Variance x: {0:.2f}'.format(tmp.x.var()) | |
print 'Variance y: {0:.2f}'.format(tmp.y.var()) | |
print 'Correlation between x and y: {0:.3f}'.format(tmp.x.corr(tmp.y)) | |
popt, pcov = curve_fit(func, tmp.x, tmp.y) | |
print 'Linear regression coefficients: y = {a:.2f} + {b:.2f}x'.format(a=popt[0], b=popt[1]) | |
print '\n' | |
# Setting up params for graphic | |
sns.set(style="white") | |
sns.set_context("talk") | |
sns.despine(left=True) | |
# Plotting | |
catcher = sns.lmplot("x", "y", col="dataset", hue="dataset", data=df, | |
col_wrap=2, ci=None, palette="husl", size=4, | |
scatter_kws={"s": 50, "alpha": 0.7}, aspect=1.5) | |
sns.despine() | |
# Saving graphic | |
plt.savefig('quartet.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment