Created
June 12, 2019 05:55
-
-
Save echan00/ea86fdf37d15b34d589b05e0489d54fc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import sys | |
sys.path.append("bert") | |
import collections | |
import csv | |
import os, sys, glob, re | |
import modeling | |
import optimization | |
import tokenization | |
import tensorflow as tf | |
import numpy as np | |
import linecache | |
flags = tf.flags | |
FLAGS = flags.FLAGS | |
from flask import Flask, request | |
from flask import jsonify | |
app = Flask(__name__) | |
flags.DEFINE_string("task_name", 'supe', "The name of the task to train.") | |
flags.DEFINE_string("vocab_file", './bert/multi_cased_L-12_H-768_A-12/vocab.txt','') | |
flags.DEFINE_string("bert_config_file",'./bert/multi_cased_L-12_H-768_A-12/bert_config.json','') | |
flags.DEFINE_string('init_checkpoint','./bert/multi_cased_L-12_H-768_A-12/bert_model.ckpt','') | |
flags.DEFINE_integer("max_seq_length",512,'') | |
flags.DEFINE_string('output_dir','./bert/sentence-alignment-classification-model_Feb_11_2019/output_apr_30_2019/','') | |
flags.DEFINE_bool('do_lower_case',False,'') | |
flags.DEFINE_bool('use_tpu',False,'') | |
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") | |
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") | |
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") | |
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") | |
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") | |
flags.DEFINE_float("num_train_epochs", 3.0, | |
"Total number of training epochs to perform.") | |
flags.DEFINE_float( | |
"warmup_proportion", 0.1, | |
"Proportion of training to perform linear learning rate warmup for. " | |
"E.g., 0.1 = 10% of training.") | |
flags.DEFINE_integer("save_checkpoints_steps", 1000, | |
"How often to save the model checkpoint.") | |
flags.DEFINE_integer("iterations_per_loop", 1000, | |
"How many steps to make in each estimator call.") | |
flags.DEFINE_integer( | |
"num_tpu_cores", 8, | |
"Only used if `use_tpu` is True. Total number of TPU cores to use.") | |
class InputExample(object): | |
"""A single training/test example for simple sequence classification.""" | |
def __init__(self, guid, text_a, text_b=None, label=None): | |
"""Constructs a InputExample. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
self.guid = guid | |
self.text_a = text_a | |
self.text_b = text_b | |
self.label = label | |
class PaddingInputExample(object): | |
"""Fake example so the num input examples is a multiple of the batch size. | |
When running eval/predict on the TPU, we need to pad the number of examples | |
to be a multiple of the batch size, because the TPU requires a fixed batch | |
size. The alternative is to drop the last batch, which is bad because it means | |
the entire output data won't be generated. | |
We use this class instead of `None` because treating `None` as padding | |
battches could cause silent errors. | |
""" | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, | |
input_ids, | |
input_mask, | |
segment_ids, | |
label_id, | |
is_real_example=True): | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.label_id = label_id | |
self.is_real_example = is_real_example | |
class DataProcessor(object): | |
"""Base class for data converters for sequence classification data sets.""" | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_test_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for prediction.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
@classmethod | |
def _read_tsv(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
with tf.gfile.Open(input_file, "r") as f: | |
reader = csv.reader((x.replace('\0','') for x in f), delimiter="\t", quotechar=quotechar) | |
lines = [] | |
for line in reader: | |
lines.append(line) | |
return lines | |
class SupervisorProcessor(DataProcessor): | |
"""Processor for the Supervisor data.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_test_examples(self, data_dir, filename): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, filename)), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["great-aligned", "good-aligned", "not-aligned", "semi-aligned"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, i) | |
try: | |
text_a = tokenization.convert_to_unicode(line[1]) | |
except: | |
text_a = ' ' | |
try: | |
text_b = tokenization.convert_to_unicode(line[2]) | |
except: | |
text_b = ' ' | |
if text_a == ' ' or text_b == ' ': | |
text_a = ' ' | |
text_b = ' ' | |
if set_type == "test": | |
label = "great-aligned" | |
else: | |
label = tokenization.convert_to_unicode(line[0]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def convert_examples_to_features(examples, label_list, max_seq_length, | |
tokenizer): | |
"""Convert a set of `InputExample`s to a list of `InputFeatures`.""" | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
#if ex_index % 10000 == 0: | |
#tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) | |
feature = convert_single_example(ex_index, example, label_list, | |
max_seq_length, tokenizer) | |
features.append(feature) | |
return features | |
def convert_single_example(ex_index, example, label_list, max_seq_length, | |
tokenizer): | |
"""Converts a single `InputExample` into a single `InputFeatures`.""" | |
if isinstance(example, PaddingInputExample): | |
return InputFeatures( | |
input_ids=[0] * max_seq_length, | |
input_mask=[0] * max_seq_length, | |
segment_ids=[0] * max_seq_length, | |
label_id=0, | |
is_real_example=False) | |
label_map = {} | |
for (i, label) in enumerate(label_list): | |
label_map[label] = i | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = None | |
if example.text_b: | |
tokens_b = tokenizer.tokenize(example.text_b) | |
if tokens_b: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length > max_seq_length: | |
print("TOO LONG: "+str(total_length)) | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP] with "- 3" | |
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) | |
else: | |
# Account for [CLS] and [SEP] with "- 2" | |
if len(tokens_a) > max_seq_length - 2: | |
tokens_a = tokens_a[0:(max_seq_length - 2)] | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = [] | |
segment_ids = [] | |
tokens.append("[CLS]") | |
segment_ids.append(0) | |
for token in tokens_a: | |
tokens.append(token) | |
segment_ids.append(0) | |
tokens.append("[SEP]") | |
segment_ids.append(0) | |
if tokens_b: | |
for token in tokens_b: | |
tokens.append(token) | |
segment_ids.append(1) | |
tokens.append("[SEP]") | |
segment_ids.append(1) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(0) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
label_id = label_map[example.label] | |
feature = InputFeatures( | |
input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
label_id=label_id, | |
is_real_example=True) | |
return feature | |
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, | |
labels, num_labels, use_one_hot_embeddings): | |
"""Creates a classification model.""" | |
model = modeling.BertModel( | |
config=bert_config, | |
is_training=is_training, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
token_type_ids=segment_ids, | |
use_one_hot_embeddings=use_one_hot_embeddings) | |
# In the demo, we are doing a simple classification task on the entire | |
# segment. | |
# | |
# If you want to use the token-level output, use model.get_sequence_output() | |
# instead. | |
output_layer = model.get_pooled_output() | |
hidden_size = output_layer.shape[-1].value | |
output_weights = tf.get_variable( | |
"output_weights", [num_labels, hidden_size], | |
initializer=tf.truncated_normal_initializer(stddev=0.02)) | |
output_bias = tf.get_variable( | |
"output_bias", [num_labels], initializer=tf.zeros_initializer()) | |
with tf.variable_scope("loss"): | |
if is_training: | |
# I.e., 0.1 dropout | |
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) | |
logits = tf.matmul(output_layer, output_weights, transpose_b=True) | |
logits = tf.nn.bias_add(logits, output_bias) | |
probabilities = tf.nn.softmax(logits, axis=-1) | |
log_probs = tf.nn.log_softmax(logits, axis=-1) | |
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) | |
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) | |
loss = tf.reduce_mean(per_example_loss) | |
return (loss, per_example_loss, logits, probabilities) | |
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, | |
num_train_steps, num_warmup_steps, use_tpu, | |
use_one_hot_embeddings): | |
"""Returns `model_fn` closure for TPUEstimator.""" | |
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument | |
"""The `model_fn` for TPUEstimator.""" | |
tf.logging.info("*** Features ***") | |
for name in sorted(features.keys()): | |
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) | |
input_ids = features["input_ids"] | |
input_mask = features["input_mask"] | |
segment_ids = features["segment_ids"] | |
label_ids = features["label_ids"] | |
is_real_example = None | |
if "is_real_example" in features: | |
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) | |
else: | |
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) | |
is_training = (mode == tf.estimator.ModeKeys.TRAIN) | |
(total_loss, per_example_loss, logits, probabilities) = create_model( | |
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, | |
num_labels, use_one_hot_embeddings) | |
tvars = tf.trainable_variables() | |
initialized_variable_names = {} | |
scaffold_fn = None | |
if init_checkpoint: | |
(assignment_map, initialized_variable_names | |
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) | |
if use_tpu: | |
def tpu_scaffold(): | |
tf.train.init_from_checkpoint(init_checkpoint, assignment_map) | |
return tf.train.Scaffold() | |
scaffold_fn = tpu_scaffold | |
else: | |
tf.train.init_from_checkpoint(init_checkpoint, assignment_map) | |
tf.logging.info("**** Trainable Variables ****") | |
for var in tvars: | |
init_string = "" | |
if var.name in initialized_variable_names: | |
init_string = ", *INIT_FROM_CKPT*" | |
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, | |
init_string) | |
output_spec = None | |
if mode == tf.estimator.ModeKeys.TRAIN: | |
train_op = optimization.create_optimizer( | |
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) | |
output_spec = tf.contrib.tpu.TPUEstimatorSpec( | |
mode=mode, | |
loss=total_loss, | |
train_op=train_op, | |
scaffold_fn=scaffold_fn) | |
elif mode == tf.estimator.ModeKeys.EVAL: | |
def metric_fn(per_example_loss, label_ids, logits, is_real_example): | |
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) | |
accuracy = tf.metrics.accuracy( | |
labels=label_ids, predictions=predictions, weights=is_real_example) | |
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) | |
return { | |
"eval_accuracy": accuracy, | |
"eval_loss": loss, | |
} | |
eval_metrics = (metric_fn, | |
[per_example_loss, label_ids, logits, is_real_example]) | |
output_spec = tf.contrib.tpu.TPUEstimatorSpec( | |
mode=mode, | |
loss=total_loss, | |
eval_metrics=eval_metrics, | |
scaffold_fn=scaffold_fn) | |
else: | |
output_spec = tf.contrib.tpu.TPUEstimatorSpec( | |
mode=mode, | |
predictions={"probabilities": probabilities}, | |
scaffold_fn=scaffold_fn) | |
return output_spec | |
return model_fn | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
# This function is not used by this file but is still used by the Colab and | |
# people who depend on it. | |
def input_fn_builder(features, seq_length, is_training, drop_remainder): | |
"""Creates an `input_fn` closure to be passed to TPUEstimator.""" | |
all_input_ids = [] | |
all_input_mask = [] | |
all_segment_ids = [] | |
all_label_ids = [] | |
for feature in features: | |
all_input_ids.append(feature.input_ids) | |
all_input_mask.append(feature.input_mask) | |
all_segment_ids.append(feature.segment_ids) | |
all_label_ids.append(feature.label_id) | |
def input_fn(params): | |
"""The actual input function.""" | |
batch_size = params["batch_size"] | |
num_examples = len(features) | |
# This is for demo purposes and does NOT scale to large data sets. We do | |
# not use Dataset.from_generator() because that uses tf.py_func which is | |
# not TPU compatible. The right way to load data is with TFRecordReader. | |
d = tf.data.Dataset.from_tensor_slices({ | |
"input_ids": | |
tf.constant( | |
all_input_ids, shape=[num_examples, seq_length], | |
dtype=tf.int32), | |
"input_mask": | |
tf.constant( | |
all_input_mask, | |
shape=[num_examples, seq_length], | |
dtype=tf.int32), | |
"segment_ids": | |
tf.constant( | |
all_segment_ids, | |
shape=[num_examples, seq_length], | |
dtype=tf.int32), | |
"label_ids": | |
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), | |
}) | |
if is_training: | |
d = d.repeat() | |
d = d.shuffle(buffer_size=100) | |
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) | |
return d | |
return input_fn | |
@app.route('/predict', methods=['GET', 'POST']) | |
def predict(): | |
processors = {"supe": SupervisorProcessor,} | |
tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, | |
FLAGS.init_checkpoint) | |
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) | |
if FLAGS.max_seq_length > bert_config.max_position_embeddings: | |
raise ValueError( | |
"Cannot use sequence length %d because the BERT model " | |
"was only trained up to sequence length %d" % | |
(FLAGS.max_seq_length, bert_config.max_position_embeddings)) | |
tf.gfile.MakeDirs(FLAGS.output_dir) | |
task_name = FLAGS.task_name.lower() | |
processor = processors[task_name]() | |
label_list = processor.get_labels() | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
tpu_cluster_resolver = None | |
if FLAGS.use_tpu and FLAGS.tpu_name: | |
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( | |
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) | |
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 | |
run_config = tf.contrib.tpu.RunConfig( | |
cluster=tpu_cluster_resolver, | |
master=FLAGS.master, | |
model_dir=FLAGS.output_dir, | |
save_checkpoints_steps=FLAGS.save_checkpoints_steps, | |
tpu_config=tf.contrib.tpu.TPUConfig( | |
iterations_per_loop=FLAGS.iterations_per_loop, | |
num_shards=FLAGS.num_tpu_cores, | |
per_host_input_for_training=is_per_host)) | |
train_examples = None | |
num_train_steps = None | |
num_warmup_steps = None | |
model_fn = model_fn_builder( | |
bert_config=bert_config, | |
num_labels=len(label_list), | |
init_checkpoint=FLAGS.init_checkpoint, | |
learning_rate=FLAGS.learning_rate, | |
num_train_steps=num_train_steps, | |
num_warmup_steps=num_warmup_steps, | |
use_tpu=FLAGS.use_tpu, | |
use_one_hot_embeddings=FLAGS.use_tpu) | |
# If TPU is not available, this will fall back to normal Estimator on CPU | |
# or GPU. | |
estimator = tf.contrib.tpu.TPUEstimator( | |
use_tpu=FLAGS.use_tpu, | |
model_fn=model_fn, | |
config=run_config, | |
train_batch_size=FLAGS.train_batch_size, | |
eval_batch_size=FLAGS.eval_batch_size, | |
predict_batch_size=FLAGS.predict_batch_size) | |
if request.method == 'POST': | |
sent_pairs = ['I am Erik Chan 我是Erik Chan'] | |
examples = [] | |
examples.append(InputExample(guid='1', text_a='I am Erik Chan', text_b='我是Erik Chan', label='great-aligned')) | |
features = convert_examples_to_features(examples, label_list, FLAGS.max_seq_length, tokenizer) | |
predict_drop_remainder = True if FLAGS.use_tpu else False | |
predict_input_fn = input_fn_builder( | |
features=features, | |
seq_length=FLAGS.max_seq_length, | |
is_training=False, | |
drop_remainder=predict_drop_remainder) | |
result = estimator.predict(input_fn=predict_input_fn) | |
probabilities = [] | |
for (i, prediction) in enumerate(result): | |
probabilities.append(prediction["probabilities"].tolist()) | |
return jsonify(probabilities) | |
if request.method == 'GET': | |
return 'Server Works!' | |
if __name__ == '__main__': | |
app.run(debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment