{directlabels} lets you attach categorical labels to many plots. for labeling values on plots, use ggrepel:
suppressPackageStartupMessages({
library(ggplot2)
library(ggrepel)
library(dplyr)
})
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser | |
Invoke-RestMethod -Uri https://get.scoop.sh | Invoke-Expression | |
scoop install git | |
scoop bucket add extras | |
scoop bucket add r-bucket https://github.com/cderv/r-bucket.git | |
scoop install rig |
import gradio as gr | |
def get_user_info(text, request: gr.Request): | |
user_info = request.headers["RStudio-Connect-Credentials"] | |
return { | |
"user_info": user_info | |
} | |
demo = gr.Interface(get_user_info, "text", "json") | |
demo.launch() |
--- | |
format: revealjs | |
--- | |
## purrr | |
::: r-fit-text | |
`map(.x, .f, ...)` | |
::: |
#!/bin/bash | |
set -e | |
BCYAN='\033[1;36m' | |
BRED='\033[1;31m' | |
NC='\033[0m' # No Color | |
BOLD='\033[1m' | |
print_heading() { | |
echo "" |
#!/usr/bin/Rscript | |
get_nodes <- function(nodes = Sys.getenv("RSTUDIO_NODES")) { | |
unlist(strsplit(nodes, ",", fixed = TRUE)) | |
} | |
get_health_check <- function(node_address) { | |
con <- url(sprintf("http://%s/health-check", node_address)) | |
on.exit(close(con)) | |
readLines(con) |
library(shiny) | |
ui <- fluidPage( | |
# Application title | |
titlePanel("clippers"), | |
sidebarLayout( | |
sidebarPanel( | |
textAreaInput("text_input", "enter text:"), | |
# using submit button makes the copy less of a lie (but still a lie) because |
library(shinydashboard) | |
library(dplyr) | |
library(dbplyr) | |
library(purrr) | |
library(shiny) | |
library(highcharter) | |
library(DT) | |
library(htmltools) | |
# Use the `config` package to get the credentials |
# renv must be active | |
install.packages( | |
c( | |
"jimhester/lookup", | |
"devtools", | |
"usethis", | |
"MilesMcBain/breakerofchains" | |
) | |
) |
{directlabels} lets you attach categorical labels to many plots. for labeling values on plots, use ggrepel:
suppressPackageStartupMessages({
library(ggplot2)
library(ggrepel)
library(dplyr)
})
library(ggplot2)
library(purrr)
split_iris <- split(iris, 1:3)
map2(
split_iris, names(split_iris), ~ {
lm(Sepal.Length ~ Sepal.Width, data = .x)
p <- ggplot(.x, aes(Sepal.Width, Sepal.Length, color = Species)) + geom_point()
print(p)
ggsave(plot = p, filename = paste0("plot_", .y, ".png"))